VideoSuperResolution

A collection of state-of-the-art video or single-image super-resolution architectures, reimplemented in tensorflow.

Github星跟蹤圖

Video Super Resolution

A collection of state-of-the-art video or single-image super-resolution architectures, reimplemented in tensorflow.

Pretrained weights is uploading now.

Several referenced PyTorch implementations are also included now.

Quick Link:

Network list and reference (Updating)

The hyperlink directs to paper site, follows the official codes if the authors open sources.

All these models are implemented in ONE framework., Model, Published, Code*, VSR (TF)**, VSR (Torch), Keywords, Pretrained, :-----, :---------, :-----, :---------, :----------, :-------, :---------, SRCNN, ECCV14, -, Keras, Y, Y, Kaiming, , RAISR, arXiv, -, -, -, Google, Pixel 3, ESPCN, CVPR16, -, Keras, Y, Y, Real time, , VDSR, CVPR16, -, Y, Y, Deep, Residual, , DRCN, CVPR16, -, Y, Y, Recurrent, DRRN, CVPR17, Caffe, PyTorch, Y, Y, Recurrent, LapSRN, CVPR17, Matlab, Y, -, Huber loss, EDSR, CVPR17, -, Y, Y, NTIRE17 Champion, , SRGAN, CVPR17, -, Y, -, 1st proposed GAN, VESPCN, CVPR17, -, Y, Y, VideoSR, , MemNet, ICCV17, Caffe, Y, -, SRDenseNet, ICCV17, -, PyTorch, Y, -, Dense, , SPMC, ICCV17, Tensorflow, T, Y, VideoSR, DnCNN, TIP17, Matlab, Y, Y, Denoise, , DCSCN, arXiv, Tensorflow, Y, -, IDN, CVPR18, Caffe, Y, -, Fast, , RDN, CVPR18, Torch, Y, -, Deep, BI-BD-DN, SRMD, CVPR18, Matlab, -, Y, Denoise/Deblur/SR, , DBPN, CVPR18, PyTorch, Y, Y, NTIRE18 Champion, , ZSSR, CVPR18, Tensorflow, -, -, Zero-shot, FRVSR, CVPR18, PDF, T, Y, VideoSR, , DUF, CVPR18, Tensorflow, T, -, VideoSR, CARN, ECCV18, PyTorch, Y, Y, Fast, , RCAN, ECCV18, PyTorch, Y, Y, Deep, BI-BD-DN, MSRN, ECCV18, PyTorch, Y, Y, , SRFeat, ECCV18, Tensorflow, Y, Y, GAN, NLRN, NIPS18, Tensorflow, T, -, Non-local, Recurrent, SRCliqueNet, NIPS18, -, -, -, Wavelet, FFDNet, TIP18, Matlab, Y, Y, Conditional denoise, CBDNet, CVPR19, Matlab, T, -, Blind-denoise, SOFVSR, ACCV18, PyTorch, -, Y, VideoSR, , ESRGAN, ECCVW18, PyTorch, -, Y, 1st place PIRM 2018, , TecoGAN, arXiv, Tensorflow, -, T, VideoSR GAN, , RBPN, CVPR19, PyTorch, -, Y, VideoSR, , DPSR, CVPR19, Pytorch, -, -, SRFBN, CVPR19, Pytorch, -, -, SRNTT, CVPR19, Tensorflow, -, -, Adobe, SAN, CVPR19, empty, -, -, AliDAMO SOTA, AdaFM, CVPR19, Pytorch, -, -, SenseTime Oral, *The 1st repo is by paper author.

**Y: included; -: not included; T: under-testing.

You can download pre-trained weights through prepare_data, or visit the hyperlink at .

(please contact me if any of links offend you or any one disabled), Name, Usage, #, Site, Comments, :---, :----, :----, :---, :-----, SET5, Test, 5, download, jbhuang0604, SET14, Test, 14, download, jbhuang0604, SunHay80, Test, 80, download, jbhuang0604, Urban100, Test, 100, download, jbhuang0604, VID4, Test, 4, download, 4 videos, BSD100, Train, 300, download, jbhuang0604, BSD300, Train/Val, 300, download, -, BSD500, Train/Val, 500, download, -, 91-Image, Train, 91, download, Yang, DIV2K, Train/Val, 900, website, NTIRE17, Waterloo, Train, 4741, website, -, MCL-V, Train, 12, website, 12 videos, GOPRO, Train/Val, 33, website, 33 videos, deblur, CelebA, Train, 202599, website, Human faces, Sintel, Train/Val, 35, website, Optical flow, FlyingChairs, Train, 22872, website, Optical flow, DND, Test, 50, website, Real noisy photos, RENOIR, Train, 120, website, Real noisy photos, NC, Test, 60, website, Noisy photos, SIDD(M), Train/Val, 200, website, NTIRE 2019 Real Denoise, RSR, Train/Val, 80, download, NTIRE 2019 Real SR, Vimeo-90k, Train/Test, 89800, website, 90k HQ videos, Other open datasets:
Kaggle
ImageNet
COCO

VSR package

This package offers a training and data processing framework based on TF.
What I made is a simple, easy-to-use framework without lots of encapulations and abstractions.
Moreover, VSR can handle raw NV12/YUV as well as a sequence of images as inputs.

Install

  1. Prepare proper tensorflow and pytorch(optional). For example, GPU and CUDA10.0 (recommend to use conda):

    conda install tensorflow-gpu==1.15.0
    # optional
    # conda install pytorch
    
  2. Install VSR package

    # For someone see this doc online
    # git clone https://github.com/loseall/VideoSuperResolution && cd VideoSuperResolution
    pip install -e .
    

Getting Started

  1. Download pre-trained weights and (optinal) training datasets. For instance, let's begin with VESPCN and vid4 test data:

    python prepare_data.py --filter vespcn vid4
    
  2. Customize backend
    cd ~/.vsr/
    touch config.yml

    backend: tensorflow  # (tensorflow, pytorch)
    verbose: info        # (debug, info, warning, error)
    
  3. Evaluate

    cd Train
    python eval.py srcnn -t vid4 --pretrain=/path/srcnn.pth
    
  4. Train

    python prepare_data.py --filter mcl-v
    cd Train
    python train.py vespcn --dataset mcl-v --memory_limit 1GB --epochs 100
    

OK, that's all you need. For more details, use --help to get more information.


More documents can be found at Docs.

主要指標

概覽
名稱與所有者LoSealL/VideoSuperResolution
主編程語言Python
編程語言Python (語言數: 1)
平台
許可證MIT License
所有者活动
創建於2018-06-04 08:42:05
推送於2020-09-11 14:36:45
最后一次提交2020-07-29 17:57:52
發布數17
最新版本名稱1.0.8 (發布於 )
第一版名稱0.5.8 (發布於 )
用户参与
星數1.7k
關注者數53
派生數298
提交數456
已啟用問題?
問題數96
打開的問題數8
拉請求數29
打開的拉請求數0
關閉的拉請求數0
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?