VideoSuperResolution

A collection of state-of-the-art video or single-image super-resolution architectures, reimplemented in tensorflow.

Github stars Tracking Chart

Video Super Resolution

A collection of state-of-the-art video or single-image super-resolution architectures, reimplemented in tensorflow.

Pretrained weights is uploading now.

Several referenced PyTorch implementations are also included now.

Quick Link:

Network list and reference (Updating)

The hyperlink directs to paper site, follows the official codes if the authors open sources.

All these models are implemented in ONE framework., Model, Published, Code*, VSR (TF)**, VSR (Torch), Keywords, Pretrained, :-----, :---------, :-----, :---------, :----------, :-------, :---------, SRCNN, ECCV14, -, Keras, Y, Y, Kaiming, , RAISR, arXiv, -, -, -, Google, Pixel 3, ESPCN, CVPR16, -, Keras, Y, Y, Real time, , VDSR, CVPR16, -, Y, Y, Deep, Residual, , DRCN, CVPR16, -, Y, Y, Recurrent, DRRN, CVPR17, Caffe, PyTorch, Y, Y, Recurrent, LapSRN, CVPR17, Matlab, Y, -, Huber loss, EDSR, CVPR17, -, Y, Y, NTIRE17 Champion, , SRGAN, CVPR17, -, Y, -, 1st proposed GAN, VESPCN, CVPR17, -, Y, Y, VideoSR, , MemNet, ICCV17, Caffe, Y, -, SRDenseNet, ICCV17, -, PyTorch, Y, -, Dense, , SPMC, ICCV17, Tensorflow, T, Y, VideoSR, DnCNN, TIP17, Matlab, Y, Y, Denoise, , DCSCN, arXiv, Tensorflow, Y, -, IDN, CVPR18, Caffe, Y, -, Fast, , RDN, CVPR18, Torch, Y, -, Deep, BI-BD-DN, SRMD, CVPR18, Matlab, -, Y, Denoise/Deblur/SR, , DBPN, CVPR18, PyTorch, Y, Y, NTIRE18 Champion, , ZSSR, CVPR18, Tensorflow, -, -, Zero-shot, FRVSR, CVPR18, PDF, T, Y, VideoSR, , DUF, CVPR18, Tensorflow, T, -, VideoSR, CARN, ECCV18, PyTorch, Y, Y, Fast, , RCAN, ECCV18, PyTorch, Y, Y, Deep, BI-BD-DN, MSRN, ECCV18, PyTorch, Y, Y, , SRFeat, ECCV18, Tensorflow, Y, Y, GAN, NLRN, NIPS18, Tensorflow, T, -, Non-local, Recurrent, SRCliqueNet, NIPS18, -, -, -, Wavelet, FFDNet, TIP18, Matlab, Y, Y, Conditional denoise, CBDNet, CVPR19, Matlab, T, -, Blind-denoise, SOFVSR, ACCV18, PyTorch, -, Y, VideoSR, , ESRGAN, ECCVW18, PyTorch, -, Y, 1st place PIRM 2018, , TecoGAN, arXiv, Tensorflow, -, T, VideoSR GAN, , RBPN, CVPR19, PyTorch, -, Y, VideoSR, , DPSR, CVPR19, Pytorch, -, -, SRFBN, CVPR19, Pytorch, -, -, SRNTT, CVPR19, Tensorflow, -, -, Adobe, SAN, CVPR19, empty, -, -, AliDAMO SOTA, AdaFM, CVPR19, Pytorch, -, -, SenseTime Oral, *The 1st repo is by paper author.

**Y: included; -: not included; T: under-testing.

You can download pre-trained weights through prepare_data, or visit the hyperlink at .

(please contact me if any of links offend you or any one disabled), Name, Usage, #, Site, Comments, :---, :----, :----, :---, :-----, SET5, Test, 5, download, jbhuang0604, SET14, Test, 14, download, jbhuang0604, SunHay80, Test, 80, download, jbhuang0604, Urban100, Test, 100, download, jbhuang0604, VID4, Test, 4, download, 4 videos, BSD100, Train, 300, download, jbhuang0604, BSD300, Train/Val, 300, download, -, BSD500, Train/Val, 500, download, -, 91-Image, Train, 91, download, Yang, DIV2K, Train/Val, 900, website, NTIRE17, Waterloo, Train, 4741, website, -, MCL-V, Train, 12, website, 12 videos, GOPRO, Train/Val, 33, website, 33 videos, deblur, CelebA, Train, 202599, website, Human faces, Sintel, Train/Val, 35, website, Optical flow, FlyingChairs, Train, 22872, website, Optical flow, DND, Test, 50, website, Real noisy photos, RENOIR, Train, 120, website, Real noisy photos, NC, Test, 60, website, Noisy photos, SIDD(M), Train/Val, 200, website, NTIRE 2019 Real Denoise, RSR, Train/Val, 80, download, NTIRE 2019 Real SR, Vimeo-90k, Train/Test, 89800, website, 90k HQ videos, Other open datasets:
Kaggle
ImageNet
COCO

VSR package

This package offers a training and data processing framework based on TF.
What I made is a simple, easy-to-use framework without lots of encapulations and abstractions.
Moreover, VSR can handle raw NV12/YUV as well as a sequence of images as inputs.

Install

  1. Prepare proper tensorflow and pytorch(optional). For example, GPU and CUDA10.0 (recommend to use conda):

    conda install tensorflow-gpu==1.15.0
    # optional
    # conda install pytorch
    
  2. Install VSR package

    # For someone see this doc online
    # git clone https://github.com/loseall/VideoSuperResolution && cd VideoSuperResolution
    pip install -e .
    

Getting Started

  1. Download pre-trained weights and (optinal) training datasets. For instance, let's begin with VESPCN and vid4 test data:

    python prepare_data.py --filter vespcn vid4
    
  2. Customize backend
    cd ~/.vsr/
    touch config.yml

    backend: tensorflow  # (tensorflow, pytorch)
    verbose: info        # (debug, info, warning, error)
    
  3. Evaluate

    cd Train
    python eval.py srcnn -t vid4 --pretrain=/path/srcnn.pth
    
  4. Train

    python prepare_data.py --filter mcl-v
    cd Train
    python train.py vespcn --dataset mcl-v --memory_limit 1GB --epochs 100
    

OK, that's all you need. For more details, use --help to get more information.


More documents can be found at Docs.

Main metrics

Overview
Name With OwnerLoSealL/VideoSuperResolution
Primary LanguagePython
Program languagePython (Language Count: 1)
Platform
License:MIT License
所有者活动
Created At2018-06-04 08:42:05
Pushed At2020-09-11 14:36:45
Last Commit At2020-07-29 17:57:52
Release Count17
Last Release Name1.0.8 (Posted on )
First Release Name0.5.8 (Posted on )
用户参与
Stargazers Count1.7k
Watchers Count53
Fork Count298
Commits Count456
Has Issues Enabled
Issues Count96
Issue Open Count8
Pull Requests Count29
Pull Requests Open Count0
Pull Requests Close Count0
项目设置
Has Wiki Enabled
Is Archived
Is Fork
Is Locked
Is Mirror
Is Private