Reinforcement Learning for Stock Prediction

这是 Siraj Raval 在 Youtube 上发表的 "股票预测的强化学习" 的代码。「This is the code for "Reinforcement Learning for Stock Prediction" By Siraj Raval on Youtube」

  • 所有者: llSourcell/Reinforcement_Learning_for_Stock_Prediction
  • 平台: Linux, Mac, Windows
  • 許可證:
  • 分類:
  • 主題:
  • 喜歡:
    0
      比較:

Github星跟蹤圖

Overview

This is the code for this video on Youtube by Siraj Raval. The author of this code is edwardhdlu . It's implementation of Q-learning applied to (short-term) stock trading. The model uses n-day windows of closing prices to determine if the best action to take at a given time is to buy, sell or sit.

As a result of the short-term state representation, the model is not very good at making decisions over long-term trends, but is quite good at predicting peaks and troughs.

Results

Some examples of results on test sets:

^GSPC 2015
S&P 500, 2015. Profit of $431.04.

BABA_2015
Alibaba Group Holding Ltd, 2015. Loss of $351.59.

AAPL 2016
Apple, Inc, 2016. Profit of $162.73.

GOOG_8_2017
Google, Inc, August 2017. Profit of $19.37.

Running the Code

To train the model, download a training and test csv files from Yahoo! Finance into data/

mkdir model
python train ^GSPC 10 1000

Then when training finishes (minimum 200 episodes for results):

python evaluate.py ^GSPC_2011 model_ep1000

References

Deep Q-Learning with Keras and Gym - Q-learning overview and Agent skeleton code

主要指標

概覽
名稱與所有者llSourcell/Reinforcement_Learning_for_Stock_Prediction
主編程語言Python
編程語言Python (語言數: 1)
平台Linux, Mac, Windows
許可證
所有者活动
創建於2018-07-17 00:35:39
推送於2022-06-28 01:18:57
最后一次提交2018-07-19 15:42:19
發布數0
用户参与
星數654
關注者數49
派生數361
提交數13
已啟用問題?
問題數27
打開的問題數20
拉請求數1
打開的拉請求數4
關閉的拉請求數1
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?