Reinforcement Learning for Stock Prediction

这是 Siraj Raval 在 Youtube 上发表的 "股票预测的强化学习" 的代码。「This is the code for "Reinforcement Learning for Stock Prediction" By Siraj Raval on Youtube」

  • 所有者: llSourcell/Reinforcement_Learning_for_Stock_Prediction
  • 平台: Linux, Mac, Windows
  • 许可证:
  • 分类:
  • 主题:
  • 喜欢:
    0
      比较:

Github星跟踪图

Overview

This is the code for this video on Youtube by Siraj Raval. The author of this code is edwardhdlu . It's implementation of Q-learning applied to (short-term) stock trading. The model uses n-day windows of closing prices to determine if the best action to take at a given time is to buy, sell or sit.

As a result of the short-term state representation, the model is not very good at making decisions over long-term trends, but is quite good at predicting peaks and troughs.

Results

Some examples of results on test sets:

^GSPC 2015
S&P 500, 2015. Profit of $431.04.

BABA_2015
Alibaba Group Holding Ltd, 2015. Loss of $351.59.

AAPL 2016
Apple, Inc, 2016. Profit of $162.73.

GOOG_8_2017
Google, Inc, August 2017. Profit of $19.37.

Running the Code

To train the model, download a training and test csv files from Yahoo! Finance into data/

mkdir model
python train ^GSPC 10 1000

Then when training finishes (minimum 200 episodes for results):

python evaluate.py ^GSPC_2011 model_ep1000

References

Deep Q-Learning with Keras and Gym - Q-learning overview and Agent skeleton code

主要指标

概览
名称与所有者llSourcell/Reinforcement_Learning_for_Stock_Prediction
主编程语言Python
编程语言Python (语言数: 1)
平台Linux, Mac, Windows
许可证
所有者活动
创建于2018-07-17 00:35:39
推送于2022-06-28 01:18:57
最后一次提交2018-07-19 15:42:19
发布数0
用户参与
星数654
关注者数49
派生数361
提交数13
已启用问题?
问题数27
打开的问题数20
拉请求数1
打开的拉请求数4
关闭的拉请求数1
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?