Fuel

一个用于机器学习的数据管道框架。「A data pipeline framework for machine learning」

Github星跟蹤圖

Fuel

Fuel 为您的机器学习模型提供了学习所需的数据。

  • 与 MNIST、CIFAR-10(图像数据集)、Google 的十亿字(文本)等常见数据集的接口。
  • 能够以各种方式对数据进行迭代,例如在迷你批次中使用洗牌/顺序实例。
  • 预处理器的流水线,允许你对数据进行即时编辑,例如添加噪声、从句子中提取 n-grams、从图像中提取补丁等。
  • 确保整个流水线是可以用 pickle 串行化的;这是能够检查点和恢复长期运行的实验的要求。为此,我们严重依赖 picklable_itertools 库。

Fuel 主要是为了 Blocks 的使用而开发的,Blocks 是一个帮助你训练神经网络的 Theano 工具包。

如果你有问题,不要犹豫,请写信到邮件列表

引用 Fuel

如果您在工作中使用 Blocks 或 Fuel,我们将非常感谢您能引用以下论文:

Bart van Merriënboer, Dzmitry Bahdanau, Vincent Dumoulin, Dmitriy Serdyuk, David Warde-Farley, Jan Chorowski, and Yoshua Bengio, "Blocks and Fuel: Frameworks for deep learning," arXiv preprint arXiv:1506.00619 [cs.LG], 2015.

文档

更多信息请参见文档


主要指標

概覽
名稱與所有者mila-iqia/fuel
主編程語言Python
編程語言Python (語言數: 2)
平台Linux, Mac, Windows
許可證MIT License
所有者活动
創建於2015-02-12 20:42:44
推送於2022-11-22 02:47:03
最后一次提交2018-10-31 08:50:33
發布數4
最新版本名稱0.2.0 (發布於 )
第一版名稱v0.0.1 (發布於 )
用户参与
星數869
關注者數64
派生數268
提交數1.1k
已啟用問題?
問題數184
打開的問題數74
拉請求數183
打開的拉請求數16
關閉的拉請求數38
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?

Fuel
Fuel provides your machine learning models with the data they need to learn.

Interfaces to common datasets such as MNIST, CIFAR-10 (image datasets), Google's One Billion Words (text), and many more
The ability to iterate over your data in a variety of ways, such as in minibatches with shuffled/sequential examples
A pipeline of preprocessors that allow you to edit your data on-the-fly, for example by adding noise, extracting n-grams from sentences, extracting patches from images, etc.
Ensure that the entire pipeline is serializable with pickle; this is a requirement for being able to checkpoint and resume long-running experiments. For this, we rely heavily on the picklable_itertools library.
Fuel is developed primarily for use by Blocks, a Theano toolkit that helps you train neural networks.

If you have questions, don't hesitate to write to the mailing list.

Citing Fuel
If you use Blocks or Fuel in your work, we'd really appreciate it if you could cite the following paper:

Bart van Merriënboer, Dzmitry Bahdanau, Vincent Dumoulin, Dmitriy Serdyuk, David Warde-Farley, Jan Chorowski, and Yoshua Bengio, "Blocks and Fuel: Frameworks for deep learning," arXiv preprint arXiv:1506.00619 [cs.LG], 2015.

Documentation
Please see the documentation for more information.