Fuel

一个用于机器学习的数据管道框架。「A data pipeline framework for machine learning」

Github星跟踪图

Fuel

Fuel 为您的机器学习模型提供了学习所需的数据。

  • 与 MNIST、CIFAR-10(图像数据集)、Google 的十亿字(文本)等常见数据集的接口。
  • 能够以各种方式对数据进行迭代,例如在迷你批次中使用洗牌/顺序实例。
  • 预处理器的流水线,允许你对数据进行即时编辑,例如添加噪声、从句子中提取 n-grams、从图像中提取补丁等。
  • 确保整个流水线是可以用 pickle 串行化的;这是能够检查点和恢复长期运行的实验的要求。为此,我们严重依赖 picklable_itertools 库。

Fuel 主要是为了 Blocks 的使用而开发的,Blocks 是一个帮助你训练神经网络的 Theano 工具包。

如果你有问题,不要犹豫,请写信到邮件列表

引用 Fuel

如果您在工作中使用 Blocks 或 Fuel,我们将非常感谢您能引用以下论文:

Bart van Merriënboer, Dzmitry Bahdanau, Vincent Dumoulin, Dmitriy Serdyuk, David Warde-Farley, Jan Chorowski, and Yoshua Bengio, "Blocks and Fuel: Frameworks for deep learning," arXiv preprint arXiv:1506.00619 [cs.LG], 2015.

文档

更多信息请参见文档


主要指标

概览
名称与所有者mila-iqia/fuel
主编程语言Python
编程语言Python (语言数: 2)
平台Linux, Mac, Windows
许可证MIT License
所有者活动
创建于2015-02-12 20:42:44
推送于2022-11-22 02:47:03
最后一次提交2018-10-31 08:50:33
发布数4
最新版本名称0.2.0 (发布于 )
第一版名称v0.0.1 (发布于 )
用户参与
星数869
关注者数64
派生数268
提交数1.1k
已启用问题?
问题数184
打开的问题数74
拉请求数183
打开的拉请求数16
关闭的拉请求数38
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?

Fuel
Fuel provides your machine learning models with the data they need to learn.

Interfaces to common datasets such as MNIST, CIFAR-10 (image datasets), Google's One Billion Words (text), and many more
The ability to iterate over your data in a variety of ways, such as in minibatches with shuffled/sequential examples
A pipeline of preprocessors that allow you to edit your data on-the-fly, for example by adding noise, extracting n-grams from sentences, extracting patches from images, etc.
Ensure that the entire pipeline is serializable with pickle; this is a requirement for being able to checkpoint and resume long-running experiments. For this, we rely heavily on the picklable_itertools library.
Fuel is developed primarily for use by Blocks, a Theano toolkit that helps you train neural networks.

If you have questions, don't hesitate to write to the mailing list.

Citing Fuel
If you use Blocks or Fuel in your work, we'd really appreciate it if you could cite the following paper:

Bart van Merriënboer, Dzmitry Bahdanau, Vincent Dumoulin, Dmitriy Serdyuk, David Warde-Farley, Jan Chorowski, and Yoshua Bengio, "Blocks and Fuel: Frameworks for deep learning," arXiv preprint arXiv:1506.00619 [cs.LG], 2015.

Documentation
Please see the documentation for more information.