evolution-strategies-starter

Evolution Strategies的入门代码。(Starter code for Evolution Strategies)

  • 所有者: openai/evolution-strategies-starter
  • 平台: Amazon Elastic Compute Cloud (EC2)
  • 許可證: MIT License
  • 分類:
  • 主題:
  • 喜歡:
    0
      比較:

Github星跟蹤圖

Status: Archive (code is provided as-is, no updates expected)

Distributed evolution

This is a distributed implementation of the algorithm described in Evolution Strategies as a Scalable Alternative to Reinforcement Learning (Tim Salimans, Jonathan Ho, Xi Chen, Ilya Sutskever).

The implementation here uses a master-worker architecture: at each iteration, the master broadcasts parameters to the workers, and the workers send returns back to the master. The humanoid scaling experiment in the paper was generated with an implementation similar to this one.

The code here runs on EC2, so you need an AWS account. It's resilient to worker termination, so it's safe to run the workers on spot instances.

Instructions

Build AMI

The humanoid experiment depends on Mujoco. Provide your own Mujoco license and binary in scripts/dependency.sh.

Install Packer, and then build images by running (you can optionally configure scripts/packer.json to choose build instance or AWS regions)

cd scripts && packer build packer.json

Packer should return you a list of AMI ids, which you should place in AMI_MAP in scripts/launch.py.

Launching

Use scripts/launch.py along with an experiment JSON file. An example JSON file is provided in the configurations directory. You must fill in all command-line arguments to scripts/launch.py.

主要指標

概覽
名稱與所有者openai/evolution-strategies-starter
主編程語言Python
編程語言Python (語言數: 2)
平台Amazon Elastic Compute Cloud (EC2)
許可證MIT License
所有者活动
創建於2017-03-24 16:14:07
推送於2019-10-31 09:20:13
最后一次提交2018-11-21 16:40:02
發布數0
用户参与
星數1.6k
關注者數239
派生數277
提交數4
已啟用問題?
問題數22
打開的問題數15
拉請求數1
打開的拉請求數1
關閉的拉請求數0
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?