evolution-strategies-starter

Evolution Strategies的入门代码。(Starter code for Evolution Strategies)

  • 所有者: openai/evolution-strategies-starter
  • 平台: Amazon Elastic Compute Cloud (EC2)
  • 许可证: MIT License
  • 分类:
  • 主题:
  • 喜欢:
    0
      比较:

Github星跟踪图

Status: Archive (code is provided as-is, no updates expected)

Distributed evolution

This is a distributed implementation of the algorithm described in Evolution Strategies as a Scalable Alternative to Reinforcement Learning (Tim Salimans, Jonathan Ho, Xi Chen, Ilya Sutskever).

The implementation here uses a master-worker architecture: at each iteration, the master broadcasts parameters to the workers, and the workers send returns back to the master. The humanoid scaling experiment in the paper was generated with an implementation similar to this one.

The code here runs on EC2, so you need an AWS account. It's resilient to worker termination, so it's safe to run the workers on spot instances.

Instructions

Build AMI

The humanoid experiment depends on Mujoco. Provide your own Mujoco license and binary in scripts/dependency.sh.

Install Packer, and then build images by running (you can optionally configure scripts/packer.json to choose build instance or AWS regions)

cd scripts && packer build packer.json

Packer should return you a list of AMI ids, which you should place in AMI_MAP in scripts/launch.py.

Launching

Use scripts/launch.py along with an experiment JSON file. An example JSON file is provided in the configurations directory. You must fill in all command-line arguments to scripts/launch.py.

主要指标

概览
名称与所有者openai/evolution-strategies-starter
主编程语言Python
编程语言Python (语言数: 2)
平台Amazon Elastic Compute Cloud (EC2)
许可证MIT License
所有者活动
创建于2017-03-24 16:14:07
推送于2019-10-31 09:20:13
最后一次提交2018-11-21 16:40:02
发布数0
用户参与
星数1.6k
关注者数239
派生数277
提交数4
已启用问题?
问题数22
打开的问题数15
拉请求数1
打开的拉请求数1
关闭的拉请求数0
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?