es-dev-stack

An on-premises, bare-metal solution for deploying GPU-powered applications in containers

Github星跟蹤圖

es-dev-stack

An on-premises, bare-metal solution for deploying GPU-powered applications in containers

Blog Post with deployment details:

http://www.emergingstack.com/2016/01/10/Nvidia-GPU-plus-CoreOS-plus-Docker-plus-TensorFlow.html

Prerequisites

  • CoreOS-compatible dedicated machine with vanilla CoreOS installed
  • Current-generation Nvidia GPU (tested with TitanX)

To Build

Nvidia Drivers Installation Image

$ cd es-dev-stack/corenvidiadrivers
$ docker build -t cuda .

GPU-enabled TensorFlow Image

$ cd es-dev-stack/tflowgpu
$ docker build -t tflowgpu .

To Run

Stage 1 - Install Nvidia Drivers & Register GPU Devices (One-Time)

# docker run -it --privileged cuda
# ./mkdevs.sh

Stage 2 - TensorFlow Docker Container with mapped GPU devices

$ docker run --device /dev/nvidia0:/dev/nvidia0 --device /dev/nvidia1:/dev/nvidia1 --device /dev/nvidiactl:/dev/nvidiactl --device /dev/nvidia-uvm:/dev/nvidia-uvm -it -p 8888:8888 --privileged tflowgpu

To Test

  • Open your web browser to http://{host IP}:8888 and launch the CNN.ipynb notebook
  • Execute all steps to confirm
  • To validate GPU is utilized, watch the statistics produced from the Nvidia-SMI tool;
$ docker exec -it {container ID} /bin/bash

From within the running container:

$ watch nvidia-smi

Credits:

This solution takes inspiration from a few community sources. Thanks to;

Nvidia driver setup via Docker - Joshua Kolden joshua@studiopyxis.com

ConvNet demo notebook - Edward Banner edward.banner@gmail.com

主要指標

概覽
名稱與所有者emergingstack/es-dev-stack
主編程語言Jupyter Notebook
編程語言Shell (語言數: 2)
平台
許可證MIT License
所有者活动
創建於2016-01-02 05:24:53
推送於2016-06-02 12:29:12
最后一次提交2016-05-30 22:28:46
發布數4
最新版本名稱v1.2.1 (發布於 )
第一版名稱v1.0 (發布於 )
用户参与
星數259
關注者數14
派生數43
提交數21
已啟用問題?
問題數11
打開的問題數1
拉請求數5
打開的拉請求數0
關閉的拉請求數1
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?