es-dev-stack

An on-premises, bare-metal solution for deploying GPU-powered applications in containers

Github星跟踪图

es-dev-stack

An on-premises, bare-metal solution for deploying GPU-powered applications in containers

Blog Post with deployment details:

http://www.emergingstack.com/2016/01/10/Nvidia-GPU-plus-CoreOS-plus-Docker-plus-TensorFlow.html

Prerequisites

  • CoreOS-compatible dedicated machine with vanilla CoreOS installed
  • Current-generation Nvidia GPU (tested with TitanX)

To Build

Nvidia Drivers Installation Image

$ cd es-dev-stack/corenvidiadrivers
$ docker build -t cuda .

GPU-enabled TensorFlow Image

$ cd es-dev-stack/tflowgpu
$ docker build -t tflowgpu .

To Run

Stage 1 - Install Nvidia Drivers & Register GPU Devices (One-Time)

# docker run -it --privileged cuda
# ./mkdevs.sh

Stage 2 - TensorFlow Docker Container with mapped GPU devices

$ docker run --device /dev/nvidia0:/dev/nvidia0 --device /dev/nvidia1:/dev/nvidia1 --device /dev/nvidiactl:/dev/nvidiactl --device /dev/nvidia-uvm:/dev/nvidia-uvm -it -p 8888:8888 --privileged tflowgpu

To Test

  • Open your web browser to http://{host IP}:8888 and launch the CNN.ipynb notebook
  • Execute all steps to confirm
  • To validate GPU is utilized, watch the statistics produced from the Nvidia-SMI tool;
$ docker exec -it {container ID} /bin/bash

From within the running container:

$ watch nvidia-smi

Credits:

This solution takes inspiration from a few community sources. Thanks to;

Nvidia driver setup via Docker - Joshua Kolden joshua@studiopyxis.com

ConvNet demo notebook - Edward Banner edward.banner@gmail.com

主要指标

概览
名称与所有者emergingstack/es-dev-stack
主编程语言Jupyter Notebook
编程语言Shell (语言数: 2)
平台
许可证MIT License
所有者活动
创建于2016-01-02 05:24:53
推送于2016-06-02 12:29:12
最后一次提交2016-05-30 22:28:46
发布数4
最新版本名称v1.2.1 (发布于 )
第一版名称v1.0 (发布于 )
用户参与
星数259
关注者数14
派生数43
提交数21
已启用问题?
问题数11
打开的问题数1
拉请求数5
打开的拉请求数0
关闭的拉请求数1
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?