awesome-machine-learning-interpretability

A curated list of awesome machine learning interpretability resources.

Github星跟蹤圖

awesome-machine-learning-interpretability Awesome

A curated, but probably biased and incomplete, list of awesome machine learning interpretability resources.

If you want to contribute to this list (and please do!) read over the contribution guidelines, send a pull request, or contact me @jpatrickhall.

An incomplete, imperfect blueprint for a more human-centered, lower-risk machine learning. The resources in this repository can be used to do many of these things today. The resources in this repository should not be considered legal compliance advice.
alt-text
Image credit: H2O.ai Machine Learning Interpretability team, https://github.com/h2oai/mli-resources.

Table of Contents

Comprehensive Software Examples and Tutorials

Explainability- or Fairness-Enhancing Software Packages

Browser

Python

R

Free Books

Other Interpretability and Fairness Resources and Lists

Review and General Papers

Teaching Resources

Interpretable ("Whitebox") or Fair Modeling Packages

C/C++

Python

R

主要指標

概覽
名稱與所有者jphall663/awesome-machine-learning-interpretability
主編程語言
編程語言 (語言數: 0)
平台
許可證Creative Commons Zero v1.0 Universal
所有者活动
創建於2018-06-21 14:26:51
推送於2025-04-17 12:46:57
最后一次提交2025-04-17 08:46:57
發布數0
用户参与
星數3.8k
關注者數131
派生數599
提交數1.3k
已啟用問題?
問題數69
打開的問題數21
拉請求數379
打開的拉請求數0
關閉的拉請求數15
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?