awesome-machine-learning-interpretability

A curated list of awesome machine learning interpretability resources.

Github星跟踪图

awesome-machine-learning-interpretability Awesome

A curated, but probably biased and incomplete, list of awesome machine learning interpretability resources.

If you want to contribute to this list (and please do!) read over the contribution guidelines, send a pull request, or contact me @jpatrickhall.

An incomplete, imperfect blueprint for a more human-centered, lower-risk machine learning. The resources in this repository can be used to do many of these things today. The resources in this repository should not be considered legal compliance advice.
alt-text
Image credit: H2O.ai Machine Learning Interpretability team, https://github.com/h2oai/mli-resources.

Table of Contents

Comprehensive Software Examples and Tutorials

Explainability- or Fairness-Enhancing Software Packages

Browser

Python

R

Free Books

Other Interpretability and Fairness Resources and Lists

Review and General Papers

Teaching Resources

Interpretable ("Whitebox") or Fair Modeling Packages

C/C++

Python

R

主要指标

概览
名称与所有者jphall663/awesome-machine-learning-interpretability
主编程语言
编程语言 (语言数: 0)
平台
许可证Creative Commons Zero v1.0 Universal
所有者活动
创建于2018-06-21 14:26:51
推送于2025-04-17 12:46:57
最后一次提交2025-04-17 08:46:57
发布数0
用户参与
星数3.8k
关注者数131
派生数599
提交数1.3k
已启用问题?
问题数69
打开的问题数21
拉请求数379
打开的拉请求数0
关闭的拉请求数15
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?