transcrypt

transparently encrypt files within a git repository

Github stars Tracking Chart

transcrypt

A script to configure transparent encryption of sensitive files stored in a Git
repository. Files that you choose will be automatically encrypted when you
commit them, and automatically decrypted when you check them out. The process
will degrade gracefully, so even people without your encryption password can
safely commit changes to the repository's non-encrypted files.

transcrypt protects your data when it's pushed to remotes that you may not
directly control (e.g., GitHub, Dropbox clones, etc.), while still allowing you
to work normally on your local working copy. You can conveniently store things
like passwords and private keys within your repository and not have to share
them with your entire team or complicate your workflow.

Overview

transcrypt is in the same vein as existing projects like
git-crypt and
git-encrypt, which follow Git's
documentation regarding the use of clean/smudge filters for encryption. In
comparison to those other projects, transcrypt makes substantial improvements in
the areas of usability and safety.

  • transcrypt is just a Bash script and does not require compilation
  • transcrypt uses OpenSSL's symmetric cipher routines rather than implementing
    its own crypto
  • transcrypt does not have to remain installed after the initial repository
    configuration
  • transcrypt generates a unique salt for each encrypted file
  • transcrypt uses safety checks to avoid clobbering or duplicating configuration
    data
  • transcrypt facilitates setting up additional clones as well as rekeying
  • transcrypt adds an alias git ls-crypt to list all encrypted files

Salt Generation

The decryption -> encryption process on an unchanged file must be
deterministic for everything to work transparently. To do that, the same salt
must be used each time we encrypt the same file. Rather than use a static salt
common to all files, transcrypt first has OpenSSL generate an HMAC-SHA256
cryptographic hash-based message authentication code for each decrypted file
(keyed with a combination of the filename and transcrypt password), and then
uses the last 16 bytes of that HMAC for the file's unique salt. When the content
of the file changes, so does the salt. Since an
HMAC has been proven to be a PRF,
this method of salt selection does not leak information about the original
contents, but is still deterministic.

Usage

The requirements to run transcrypt are minimal:

  • Bash
  • Git
  • OpenSSL

...and optionally:

  • GnuPG - for secure configuration import/export

You also need access to the transcrypt script itself. You can add it directly
to your repository, or just put it somewhere in your $PATH:

$ git clone https://github.com/elasticdog/transcrypt.git
$ cd transcrypt/
$ sudo ln -s ${PWD}/transcrypt /usr/local/bin/transcrypt

Installation via Packages

A number of packages are available for installing transcrypt directly on your
system via its native package manager. Some of these packages also include man
page documentation as well as shell auto-completion scripts.

...see the INSTALL document for more details.

Initialize an Unconfigured Repository

transcrypt will interactively prompt you for the required information, all you
have to do run the script within a Git repository:

$ cd <path-to-your-repo>/
$ transcrypt

If you already know the values you want to use, you can specify them directly
using the command line options. Run transcrypt --help for more details.

Designate a File to be Encrypted

Once a repository has been configured with transcrypt, you can designate for
files to be encrypted by applying the "crypt" filter and diff to a
pattern
in the top-level .gitattributes
config. If that pattern matches a file in your repository, the file will be
transparently encrypted once you stage and commit it:

$ cd <path-to-your-repo>/
$ echo 'sensitive_file  filter=crypt diff=crypt' >> .gitattributes
$ git add .gitattributes sensitive_file
$ git commit -m 'Add encrypted version of a sensitive file'

The .gitattributes file should be committed and tracked along with everything
else in your repository so clones will be aware of what is encrypted. Make sure
you don't accidentally add a pattern that would encrypt this file :-)

For your reference, if you find the above description confusing, you'll find
that this repository has been configured following these exact steps.

Listing the Currently Encrypted Files

For convenience, transcrypt also adds a Git alias to allow you to list all of
the currently encrypted files in a repository:

$ git ls-crypt
sensitive_file

Alternatively, you can use the --list command line option:

$ transcrypt --list
sensitive_file

You can also use this to verify your .gitattributes patterns when designating
new files to be encrypted, as the alias will list pattern matches as long as
everything has been staged (via git add).

After committing things, but before you push to a remote repository, you can
validate that files are encrypted as expected by viewing them in their raw form:

$ git show HEAD:<path-to-file> --no-textconv

The <path-to-file> in the above command must be relative to the top-level of
the repository. Alternatively, you can use the --show-raw command line option
and provide a path relative to your current directory:

$ transcrypt --show-raw sensitive_file

Initialize a Clone of a Configured Repository

If you have just cloned a repository containing files that are encrypted, you'll
want to configure transcrypt with the same cipher and password as the origin
repository. The owner of the origin repository can dump the credentials for you
by running the --display command line option:

$ transcrypt --display
The current repository was configured using transcrypt v0.2.0
and has the following configuration:

  CIPHER:   aes-256-cbc
  PASSWORD: correct horse battery staple

Copy and paste the following command to initialize a cloned repository:

  transcrypt -c aes-256-cbc -p 'correct horse battery staple'

Once transcrypt has stored the matching credentials, it will force a checkout of
any exising encrypted files in order to decrypt them.

Rekeying

Periodically, you may want to change the encryption cipher or password used to
encrypt the files in your repository. You can do that easily with transcrypt's
rekey option:

$ transcrypt --rekey

As a warning, rekeying will remove your ability to see historical diffs of the
encrypted files in plain text. Changes made with the new key will still be
visible, and you can always see the historical diffs in encrypted form by
disabling the text conversion filters:

$ git log --patch --no-textconv

After rekeying, all clones of your repository should flush their transcrypt
credentials, fetch and merge the new encrypted files via Git, and then
re-configure transcrypt with the new credentials.

$ transcrypt --flush-credentials
$ git fetch origin
$ git merge origin/master
$ transcrypt -c aes-256-cbc -p 'the-new-password'

Command Line Options

Completion scripts for both Bash and Zsh are included in the contrib/
directory.

transcrypt [option...]

  -c, --cipher=CIPHER
         the symmetric cipher to utilize for encryption;
         defaults to aes-256-cbc

  -p, --password=PASSWORD
         the password to derive the key from;
         defaults to 30 random base64 characters

  -y, --yes
         assume yes and accept defaults for non-specified options

  -d, --display
         display the current repository's cipher and password

  -r, --rekey
         re-encrypt all encrypted files using new credentials

  -f, --flush-credentials
         remove the locally cached encryption credentials and  re-encrypt
         any files that had been previously decrypted

  -F, --force
         ignore whether the git directory is clean, proceed with the
         possibility that uncommitted changes are overwritten

  -u, --uninstall
         remove  all  transcrypt  configuration  from  the repository and
         leave files in the current working copy decrypted

  -l, --list
         list all of the transparently encrypted files in the repository,
         relative to the top-level directory

  -s, --show-raw=FILE
         show  the  raw file as stored in the git commit object; use this
         to check if files are encrypted as expected

  -e, --export-gpg=RECIPIENT
         export  the  repository's cipher and password to a file encrypted
         for a gpg recipient

  -i, --import-gpg=FILE
         import the password and cipher from a gpg encrypted file

  -v, --version
         print the version information

  -h, --help
         view this help message

Caveats

Overhead

The method of using filters to selectively encrypt/decrypt files does add some
overhead to Git by regularly forking OpenSSL processes and removing Git's
ability to efficiently cache file changes. That said, it's not too different
from tracking binary files, and when used as intended, transcrypt should not
noticeably impact performance. There are much better options if your goal is to
encrypt the entire repository.

Localhost

Note that the configuration and encryption information is stored in plain text
within the repository's .git/config file. This prevents them from being
transferred to remote clones, but they are not protected from inquisitive users
on your local machine.

For safety, you may prefer to only have the credentials stored when actually
updating encrypted files, and then flush them with --flush-credentials once
you're done (make sure you have the credentials backed up elsewhere!). This will
also revert any decrypted files back to their encrypted form in your local
working copy.

Cipher Selection

Last up, regarding the default cipher choice of aes-256-cbc...there aren't any
fantastic alternatives without pulling in outside dependencies. Ideally, we
would use an authenticated cipher mode like id-aes256-GCM by default, but
there are a couple of issues:

  1. I'd like to support OS X out of the box, and unfortunately they are the
    lowest common denominator when it comes to OpenSSL. For whatever reason, they
    still include OpenSSL 0.9.8y rather than a newer release. Unfortunately,
    GCM-based ciphers weren't added until OpenSSL 1.0.1 (back in early 2012).

  2. Even with newer versions of OpenSSL, the authenticated cipher modes
    don't work exactly right
    when utilizing the command line openssl enc.

I'm contemplating if transcrypt should append an HMAC to the aes-256-cbc
ciphertext to provide authentication, or if we should live with the
malleability issues
as a known limitation. Essentially, malicious comitters without the transcrypt
password could potentially manipulate the plaintext in limited ways (given that
the attacker knows the original plaintext). Honestly, I'm not sure if the added
complexity here would be worth it given transcrypt's use case.

License

transcrypt is provided under the terms of the
MIT License.

Copyright © 2014-2019, Aaron Bull Schaefer.

Main metrics

Overview
Name With Ownerelasticdog/transcrypt
Primary LanguageShell
Program languageShell (Language Count: 1)
Platform
License:MIT License
所有者活动
Created At2014-02-08 07:18:33
Pushed At2025-04-21 21:36:05
Last Commit At
Release Count19
Last Release Namev2.3.1 (Posted on 2025-02-24 23:51:43)
First Release Namev0.9.4 (Posted on 2014-03-02 12:55:15)
用户参与
Stargazers Count1.5k
Watchers Count20
Fork Count106
Commits Count294
Has Issues Enabled
Issues Count110
Issue Open Count21
Pull Requests Count51
Pull Requests Open Count7
Pull Requests Close Count32
项目设置
Has Wiki Enabled
Is Archived
Is Fork
Is Locked
Is Mirror
Is Private