YOLOv3

YOLOv3 in PyTorch > ONNX > CoreML > iOS

Github星跟蹤圖

Introduction

This directory contains PyTorch YOLOv3 software developed by Ultralytics LLC, and is freely available for redistribution under the GPL-3.0 license. For more information please visit https://www.ultralytics.com.

Description

The https://github.com/ultralytics/yolov3 repo contains inference and training code for YOLOv3 in PyTorch. The code works on Linux, MacOS and Windows. Training is done on the COCO dataset by default: https://cocodataset.org/#home. Credit to Joseph Redmon for YOLO: https://pjreddie.com/darknet/yolo/.

Requirements

Python 3.7 or later with all of the pip install -U -r requirements.txt packages including:

  • torch >= 1.4
  • opencv-python
  • Pillow

All dependencies are included in the associated docker images. Docker requirements are:

  • Nvidia Driver >= 440.44
  • Docker Engine - CE >= 19.03

Tutorials

Jupyter Notebook

Our Jupyter notebook provides quick training, inference and testing examples.

Training

Start Training: python3 train.py to begin training after downloading COCO data with data/get_coco_dataset.sh. Each epoch trains on 117,263 images from the train and validate COCO sets, and tests on 5000 images from the COCO validate set.

Resume Training: python3 train.py --resume to resume training from weights/last.pt.

Plot Training: from utils import utils; utils.plot_results() plots training results from coco_16img.data, coco_64img.data, 2 example datasets available in the data/ folder, which train and test on the first 16 and 64 images of the COCO2014-trainval dataset.

Image Augmentation

datasets.py applies random OpenCV-powered (https://opencv.org/) augmentation to the input images in accordance with the following specifications. Augmentation is applied only during training, not during inference. Bounding boxes are automatically tracked and updated with the images. 416 x 416 examples pictured below.

Augmentation

主要指標

概覽
名稱與所有者ultralytics/yolov3
主編程語言Python
編程語言Shell (語言數: 4)
平台Linux, Mac, Windows
許可證GNU Affero General Public License v3.0
所有者活动
創建於2018-08-26 08:57:20
推送於2025-04-17 23:01:37
最后一次提交2025-04-18 01:01:36
發布數12
最新版本名稱v9.6.0 (發布於 )
第一版名稱v1.0 (發布於 )
用户参与
星數10.4k
關注者數155
派生數3.5k
提交數2.9k
已啟用問題?
問題數1827
打開的問題數9
拉請求數360
打開的拉請求數0
關閉的拉請求數96
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?