Yolo_mark

用于标记图像中物体的边界框的图形用户界面,用于训练神经网络Yolo v3和v2。「GUI for marking bounded boxes of objects in images for training neural network Yolo v3 and v2

Github星跟蹤圖

Yolo_mark

Windows & Linux GUI for marking bounded boxes of objects in images for training Yolo v3 and v2

  • To compile on Windows open yolo_mark.sln in MSVS2013/2015, compile it x64 & Release and run the file: x64/Release/yolo_mark.cmd. Change paths in yolo_mark.sln to the OpenCV 2.x/3.x installed on your computer:

    • (right click on project) -> properties -> C/C++ -> General -> Additional Include Directories: C:\opencv_3.0\opencv\build\include;

    • (right click on project) -> properties -> Linker -> General -> Additional Library Directories: C:\opencv_3.0\opencv\build\x64\vc14\lib;

  • To compile on Linux type in console 3 commands:

    cmake .
    make
    ./linux_mark.sh
    

Supported both: OpenCV 2.x and OpenCV 3.x


  1. To test, simply run
  • on Windows: x64/Release/yolo_mark.cmd
  • on Linux: ./linux_mark.sh
  1. To use for labeling your custom images:
  1. To training for your custom objects, you should change 2 lines in file x64/Release/yolo-obj.cfg:

3.1 Download pre-trained weights for the convolutional layers (76 MB): http://pjreddie.com/media/files/darknet19_448.conv.23

3.2 Put files: yolo-obj.cfg, data/train.txt, data/obj.names, data/obj.data, darknet19_448.conv.23 and directory data/img near with executable darknet-file, and start training: darknet detector train data/obj.data yolo-obj.cfg darknet19_448.conv.23

For a detailed description, see: https://github.com/AlexeyAB/darknet#how-to-train-to-detect-your-custom-objects


How to get frames from videofile:

To get frames from videofile (save each N frame, in example N=10), you can use this command:

  • on Windows: yolo_mark.exe data/img cap_video test.mp4 10
  • on Linux: ./yolo_mark x64/Release/data/img cap_video test.mp4 10

Directory data/img should be created before this. Also on Windows, the file opencv_ffmpeg340_64.dll from opencv\build\bin should be placed near with yolo_mark.exe.

As a result, many frames will be collected in the directory data/img. Then you can label them manually using such command:

  • on Windows: yolo_mark.exe data/img data/train.txt data/obj.names
  • on Linux: ./yolo_mark x64/Release/data/img x64/Release/data/train.txt x64/Release/data/obj.names

Here are:

  • /x64/Release/

    • yolo_mark.cmd - example hot to use yolo mark: yolo_mark.exe data/img data/train.txt data/obj.names
    • train_obj.cmd - example how to train yolo for your custom objects (put this file near with darknet.exe): darknet.exe detector train data/obj.data yolo-obj.cfg darknet19_448.conv.23
    • yolo-obj.cfg - example of yoloV3-neural-network for 2 object
  • /x64/Release/data/

    • obj.names - example of list with object names
    • obj.data - example with configuration for training Yolo v3
    • train.txt - example with list of image filenames for training Yolo v3
  • /x64/Release/data/img/air4.txt - example with coordinates of objects on image air4.jpg with aircrafts (class=0)

Image of Yolo_mark

Instruction manual

Mouse control

Button Description
Left Draw box
Right Move box

Keyboard Shortcuts

Shortcut Description
Next image
Previous image
r Delete selected box (mouse hovered)
c Clear all marks on the current image
p Copy previous mark
o Track objects
ESC Close application
n One object per image
0-9 Object id
m Show coords
w Line width
k Hide object name
h Help

主要指標

概覽
名稱與所有者AlexeyAB/Yolo_mark
主編程語言C++
編程語言C++ (語言數: 4)
平台Linux, Windows
許可證The Unlicense
所有者活动
創建於2016-12-17 21:25:07
推送於2020-12-11 00:29:20
最后一次提交2019-04-24 12:59:27
發布數0
用户参与
星數1.8k
關注者數70
派生數679
提交數64
已啟用問題?
問題數194
打開的問題數134
拉請求數8
打開的拉請求數12
關閉的拉請求數2
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?