Turing.jl

The Turing language for probabilistic machine learning and Bayesian statistics

Turing.jl

Build Status
Build Status
Coverage Status
Documentation

Turing.jl is a Julia library for general-purpose probabilistic programming. Turing allows the user to write models using standard Julia syntax, and provides a wide range of sampling-based inference methods for solving problems across probabilistic machine learning, Bayesian statistics, and data science. Compared to other probabilistic programming languages, Turing has a special focus on modularity, and decouples the modelling language (i.e. the compiler) and inference methods. This modular design, together with the use of a high-level numerical language Julia, makes Turing particularly extensible: new model families and inference methods can be easily added.

Current features include:

Getting Started

Turing's home page, with links to everything you'll need to use Turing is:

https://turing.ml/dev/docs/using-turing/get-started

What's changed recently?

See releases.

Want to contribute?

Turing was originally created and is now managed by Hong Ge. Current and past Turing team members include Hong Ge, Kai Xu, Martin Trapp, Mohamed Tarek, Cameron Pfiffer, Tor Fjelde.
You can see the full list of on Github: https://github.com/TuringLang/Turing.jl/graphs/contributors.

Turing is an open source project so if you feel you have some relevant skills and are interested in contributing then please do get in touch. See the Contributing page for details on the process. You can contribute by opening issues on Github or implementing things yourself and making a pull request. We would also appreciate example models written using Turing.

Slack

Join our channel (#turing) in the Julia Slack chat for help, discussion, or general communication with the Turing team. If you do not already have an invitation to Julia's Slack, you can get one by going here.

  • The Stan language for probabilistic programming - Stan.jl
  • Bare-bones implementation of robust dynamic Hamiltonian Monte Carlo methods - DynamicHMC.jl
  • Comparing performance and results of mcmc options using Julia - MCMCBenchmarks.jl

Citing Turing.jl

If you use Turing for your own research, please consider citing the following publication: Hong Ge, Kai Xu, and Zoubin Ghahramani: Turing: a language for flexible probabilistic inference. AISTATS 2018 pdf bibtex

主要指標

概覽
名稱與所有者TuringLang/Turing.jl
主編程語言Julia
編程語言Julia (語言數: 1)
平台
許可證MIT License
所有者活动
創建於2016-04-29 10:51:43
推送於2025-04-25 14:50:57
最后一次提交
發布數196
最新版本名稱v0.37.0 (發布於 2025-03-19 11:32:42)
第一版名稱v0.0.1 (發布於 )
用户参与
星數2.1k
關注者數51
派生數226
提交數3.4k
已啟用問題?
問題數1154
打開的問題數93
拉請求數925
打開的拉請求數11
關閉的拉請求數318
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?