texar-pytorch

PyTorch 中的机器学习和文本生成工具包。(Toolkit for Machine Learning and Text Generation, in PyTorch)

Github星跟蹤圖


pypi
Build Status
codecov
Documentation Status
License

Texar-PyTorch is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides a library of easy-to-use ML modules and functionalities for composing whatever models and algorithms. The tool is designed for both researchers and practitioners for fast prototyping and experimentation.

Texar-PyTorch integrates many of the best features of TensorFlow into PyTorch, delivering highly usable and customizable modules superior to PyTorch native ones.

Key Features

  • Two Versions, (Mostly) Same Interfaces. Texar-PyTorch (this repo) and Texar-TF have mostly the same interfaces. Both further combine the best design of TF and PyTorch:
    • Interfaces and variable sharing in PyTorch convention
    • Excellent factorization and rich functionalities in TF convention.
  • Versatile to support broad needs:
    • data processing, model architectures, loss functions, training and inference algorithms, evaluation, ...
    • encoder(s) to decoder(s), sequential- and self-attentions, memory, hierarchical models, classifiers, ...
    • maximum likelihood learning, reinforcement learning, adversarial learning, probabilistic modeling, ...
  • Fully Customizable at multiple abstraction level -- both novice-friendly and expert-friendly.
    • Free to plug in whatever external modules, since Texar is fully compatible with the native PyTorch APIs.
  • Modularized for maximal re-use and clean APIs, based on principled decomposition of Learning-Inference-Model Architecture.
  • Rich Pre-trained Models, Rich Usage with Uniform Interfaces. BERT, GPT2, XLNet, etc, for encoding, classification, generation, and composing complex models with other Texar components!
  • Clean, detailed documentation and rich examples.

Library API Example

A code example that builds and trains a Conditional GPT2 model (e.g., for machine translation and text summarization):

import texar.torch as tx
from texar.torch.run import *

# (1) Modeling
class ConditionalGPT2Model(nn.Module):
  """An encoder-decoder model with GPT-2 as the decoder."""
  def __init__(self, vocab_size):
    super().__init__()
    # Use hyperparameter dict for model configuration
    self.embedder = tx.modules.WordEmbedder(vocab_size, hparams=emb_hparams)
    self.encoder = tx.modules.TransformerEncoder(hparams=enc_hparams)
    self.decoder = tx.modules.GPT2Decoder("gpt2-small")  # With pre-trained weights

  def _get_decoder_output(self, batch, train=True):
    """Perform model inference, i.e., decoding."""
    enc_states = self.encoder(inputs=self.embedder(batch['source_text_ids']),
                              sequence_length=batch['source_length'])
    if train:  # Teacher-forcing decoding at training time
      return self.decoder(
          inputs=batch['target_text_ids'], sequence_length=batch['target_length'] - 1,
          memory=enc_states, memory_sequence_length=batch['source_length'])
    else:      # Beam search decoding at prediction time
      start_tokens = torch.full_like(batch['source_text_ids'][:, 0], BOS)
      return self.decoder(
          beam_width=5, start_tokens=start_tokens,
          memory=enc_states, memory_sequence_length=batch['source_length'])

  def forward(self, batch):
    """Compute training loss."""
    outputs = self._get_decoder_output(batch)
    loss = tx.losses.sequence_sparse_softmax_cross_entropy(  # Sequence loss
        labels=batch['target_text_ids'][:, 1:], logits=outputs.logits,
        sequence_length=batch['target_length'] - 1)  # Automatic masking
    return {"loss": loss}

  def predict(self, batch):
    """Compute model predictions."""
    sequence, _ = self._get_decoder_output(batch, train=False)
    return {"gen_text_ids": sequence}

  
# (2) Data
# Create dataset splits using built-in data loaders
datasets = {split: tx.data.PairedTextData(hparams=data_hparams[split])
            for split in ["train", "valid", "test"]}

model = ConditionalGPT2Model(datasets["train"].target_vocab.size)

# (3) Training
# Manage the train-eval loop with the Executor API
executor = Executor(
  model=model, datasets=datasets,
  optimizer={"type": torch.optim.Adam, "kwargs": {"lr": 5e-4}},
  stop_training_on=cond.epoch(20),
  log_every=cond.iteration(100),
  validate_every=cond.epoch(1),
  train_metric=("loss", metric.RunningAverage(10, pred_name="loss")),
  valid_metric=metric.BLEU(pred_name="gen_text_ids", label_name="target_text_ids"),
  save_every=cond.validation(better=True),
  checkpoint_dir="outputs/saved_models/")
executor.train()
executor.test(datasets["test"])

Many more examples are available here.

Installation

Texar-PyTorch requires:

  • python == 3.6 or 3.7
  • torch >= 1.0.0. Please follow the official instructions to install the appropriate version.

After torch is installed, install Texar from PyPI:

pip install texar-pytorch

To use cutting-edge features or develop locally, install from source:

git clone https://github.com/asyml/texar-pytorch.git
cd texar-pytorch
pip install .

To use tensorboard support with Executor, please install tensorboardX with the following command

pip install tensorboardX

Getting Started

Reference

If you use Texar, please cite the tech report with the following BibTex entry:

Texar: A Modularized, Versatile, and Extensible Toolkit for Text Generation
Zhiting Hu, Haoran Shi, Bowen Tan, Wentao Wang, Zichao Yang, Tiancheng Zhao, Junxian He, Lianhui Qin, Di Wang, Xuezhe Ma, Zhengzhong Liu, Xiaodan Liang, Wanrong Zhu, Devendra Sachan and Eric Xing
ACL 2019

@inproceedings{hu2019texar,
  title={Texar: A Modularized, Versatile, and Extensible Toolkit for Text Generation},
  author={Hu, Zhiting and Shi, Haoran and Tan, Bowen and Wang, Wentao and Yang, Zichao and Zhao, Tiancheng and He, Junxian and Qin, Lianhui and Wang, Di and others},
  booktitle={ACL 2019, System Demonstrations},
  year={2019}
}

License

Apache License 2.0

主要指標

概覽
名稱與所有者asyml/texar-pytorch
主編程語言Python
編程語言Python (語言數: 4)
平台Linux, Mac, Windows
許可證Apache License 2.0
所有者活动
創建於2019-03-08 01:04:09
推送於2022-04-14 01:26:58
最后一次提交2022-04-13 21:26:14
發布數7
最新版本名稱v0.1.4 (發布於 )
第一版名稱v0.0.1 (發布於 )
用户参与
星數745
關注者數24
派生數114
提交數496
已啟用問題?
問題數138
打開的問題數30
拉請求數175
打開的拉請求數5
關閉的拉請求數35
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?