sumy

Module for automatic summarization of text documents and HTML pages.

Github星跟蹤圖

Automatic text summarizer

image
Gitpod Ready-to-Code

Simple library and command line utility for extracting summary from HTML
pages or plain texts. The package also contains simple evaluation
framework for text summaries. Implemented summarization methods are described in the documentation. I also maintain a list of alternative implementations of the summarizers in various programming languages.

Is my natural language supported?

There is a good chance it is. But if not it is not too hard to add it.

Installation

Make sure you have Python 2.7/3.5+ and
pip
(Windows,
Linux)
installed. Run simply (preferred way):

$ [sudo] pip install sumy
$ [sudo] pip install git+git://github.com/miso-belica/sumy.git  # for the fresh version

Usage

Sumy contains command line utility for quick summarization of documents.

$ sumy lex-rank --length=10 --url=http://en.wikipedia.org/wiki/Automatic_summarization # what's summarization?
$ sumy luhn --language=czech --url=http://www.zdrojak.cz/clanky/automaticke-zabezpeceni/
$ sumy edmundson --language=czech --length=3% --url=http://cs.wikipedia.org/wiki/Bitva_u_Lipan
$ sumy --help # for more info

Various evaluation methods for some summarization method can be executed
by commands below:

$ sumy_eval lex-rank reference_summary.txt --url=http://en.wikipedia.org/wiki/Automatic_summarization
$ sumy_eval lsa reference_summary.txt --language=czech --url=http://www.zdrojak.cz/clanky/automaticke-zabezpeceni/
$ sumy_eval edmundson reference_summary.txt --language=czech --url=http://cs.wikipedia.org/wiki/Bitva_u_Lipan
$ sumy_eval --help # for more info

Python API

Or you can use sumy like a library in your project. Create file sumy_example.py (don't name it sumy.py) with the code below to test it.

# -*- coding: utf-8 -*-

from __future__ import absolute_import
from __future__ import division, print_function, unicode_literals

from sumy.parsers.html import HtmlParser
from sumy.parsers.plaintext import PlaintextParser
from sumy.nlp.tokenizers import Tokenizer
from sumy.summarizers.lsa import LsaSummarizer as Summarizer
from sumy.nlp.stemmers import Stemmer
from sumy.utils import get_stop_words


LANGUAGE = "english"
SENTENCES_COUNT = 10


if __name__ == "__main__":
    url = "https://en.wikipedia.org/wiki/Automatic_summarization"
    parser = HtmlParser.from_url(url, Tokenizer(LANGUAGE))
    # or for plain text files
    # parser = PlaintextParser.from_file("document.txt", Tokenizer(LANGUAGE))
    # parser = PlaintextParser.from_string("Check this out.", Tokenizer(LANGUAGE))
    stemmer = Stemmer(LANGUAGE)

    summarizer = Summarizer(stemmer)
    summarizer.stop_words = get_stop_words(LANGUAGE)

    for sentence in summarizer(parser.document, SENTENCES_COUNT):
        print(sentence)

Interesting projects using sumy

I found some interesting projects while browsing the interner or sometimes people wrote me an e-mail with questions and I was curious how they use the sumy :)

主要指標

概覽
名稱與所有者miso-belica/sumy
主編程語言Python
編程語言Python (語言數: 3)
平台
許可證Apache License 2.0
所有者活动
創建於2013-02-20 12:56:48
推送於2024-05-16 18:13:04
最后一次提交
發布數15
最新版本名稱v0.11.0 (發布於 )
第一版名稱v0.1.0 (發布於 )
用户参与
星數3.6k
關注者數114
派生數528
提交數456
已啟用問題?
問題數124
打開的問題數23
拉請求數69
打開的拉請求數1
關閉的拉請求數23
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?