SPTAG

A distributed approximate nearest neighborhood search (ANN) library which provides a high quality vector index build, search and distributed online serving toolkits for large scale vector search scenario.

Github星跟蹤圖

SPTAG: A library for fast approximate nearest neighbor search

MIT licensed
Build status

SPTAG

SPTAG (Space Partition Tree And Graph) is a library for large scale vector approximate nearest neighbor search scenario released by Microsoft Research (MSR) and Microsoft Bing.

Introduction

This library assumes that the samples are represented as vectors and that the vectors can be compared by L2 distances or cosine distances.
Vectors returned for a query vector are the vectors that have smallest L2 distance or cosine distances with the query vector.

SPTAG provides two methods: kd-tree and relative neighborhood graph (SPTAG-KDT)
and balanced k-means tree and relative neighborhood graph (SPTAG-BKT).
SPTAG-KDT is advantageous in index building cost, and SPTAG-BKT is advantageous in search accuracy in very high-dimensional data.

How it works

SPTAG is inspired by the NGS approach [WangL12]. It contains two basic modules: index builder and searcher.
The RNG is built on the k-nearest neighborhood graph [WangWZTG12, WangWJLZZH14]
for boosting the connectivity. Balanced k-means trees are used to replace kd-trees to avoid the inaccurate distance bound estimation in kd-trees for very high-dimensional vectors.
The search begins with the search in the space partition trees for
finding several seeds to start the search in the RNG.
The searches in the trees and the graph are iteratively conducted.

Highlights

  • Fresh update: Support online vector deletion and insertion
  • Distributed serving: Search over multiple machines

Build

Requirements

  • swig >= 3.0
  • cmake >= 3.12.0
  • boost >= 1.67.0

Install

For Linux:

mkdir build
cd build && cmake .. && make

It will generate a Release folder in the code directory which contains all the build targets.

For Windows:

mkdir build
cd build && cmake -A x64 ..

It will generate a SPTAGLib.sln in the build directory.
Compiling the ALL_BUILD project in the Visual Studio (at least 2015) will generate a Release directory which contains all the build targets.

For detailed instructions on installing Windows binaries, please see here

Using Docker:

docker build -t sptag .

Will build a docker container with binaries in /app/Release/.

Verify

Run the test (or Test.exe) in the Release folder to verify all the tests have passed.

Usage

The detailed usage can be found in Get started. There is also an end-to-end tutorial for building vector search online service using Python Wrapper in Python Tutorial.
The detailed parameters tunning can be found in Parameters.

References

Please cite SPTAG in your publications if it helps your research:

@manual{ChenW18,
  author    = {Qi Chen and
               Haidong Wang and
               Mingqin Li and 
               Gang Ren and
               Scarlett Li and
               Jeffery Zhu and
               Jason Li and
               Chuanjie Liu and
               Lintao Zhang and
               Jingdong Wang},
  title     = {SPTAG: A library for fast approximate nearest neighbor search},
  url       = {https://github.com/Microsoft/SPTAG},
  year      = {2018}
}

@inproceedings{WangL12,
  author    = {Jingdong Wang and
               Shipeng Li},
  title     = {Query-driven iterated neighborhood graph search for large scale indexing},
  booktitle = {ACM Multimedia 2012},
  pages     = {179--188},
  year      = {2012}
}

@inproceedings{WangWZTGL12,
  author    = {Jing Wang and
               Jingdong Wang and
               Gang Zeng and
               Zhuowen Tu and
               Rui Gan and
               Shipeng Li},
  title     = {Scalable k-NN graph construction for visual descriptors},
  booktitle = {CVPR 2012},
  pages     = {1106--1113},
  year      = {2012}
}

@article{WangWJLZZH14,
  author    = {Jingdong Wang and
               Naiyan Wang and
               You Jia and
               Jian Li and
               Gang Zeng and
               Hongbin Zha and
               Xian{-}Sheng Hua},
  title     = {Trinary-Projection Trees for Approximate Nearest Neighbor Search},
  journal   = {{IEEE} Trans. Pattern Anal. Mach. Intell.},
  volume    = {36},
  number    = {2},
  pages     = {388--403},
  year      = {2014
}

Contribute

This project welcomes contributions and suggestions from all the users.

We use GitHub issues for tracking suggestions and bugs.

License

The entire codebase is under MIT license

主要指標

概覽
名稱與所有者microsoft/SPTAG
主編程語言C++
編程語言CMake (語言數: 7)
平台
許可證MIT License
所有者活动
創建於2018-09-12 10:42:51
推送於2025-09-30 12:38:21
最后一次提交
發布數0
用户参与
星數5k
關注者數135
派生數601
提交數221
已啟用問題?
問題數165
打開的問題數116
拉請求數201
打開的拉請求數25
關閉的拉請求數43
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?