siuba (小巴)

用于在 pandas 和 SQL 中使用类似 dplyr 语法的 Python 库。「Python library for using dplyr like syntax with pandas and SQL」

Github星跟蹤圖

siuba

scrappy data analysis, with seamless support for pandas and SQL

CI
Documentation Status
Binder

siuba (小巴) is a port of dplyr and other R libraries. It supports a tabular data analysis workflow centered on 5 common actions:

  • select() - keep certain columns of data.
  • filter() - keep certain rows of data.
  • mutate() - create or modify an existing column of data.
  • summarize() - reduce one or more columns down to a single number.
  • arrange() - reorder the rows of data.

These actions can be preceded by a group_by(), which causes them to be applied individually to grouped rows of data. Moreover, many SQL concepts, such as distinct(), count(), and joins are implemented.
Inputs to these functions can be a pandas DataFrame or SQL connection (currently postgres, redshift, or sqlite).

For more on the rationale behind tools like dplyr, see this tidyverse paper.
For examples of siuba in action, see the siuba guide.

Installation

pip install siuba

Examples

See the siuba guide or this live analysis for a full introduction.

Basic use

The code below uses the example DataFrame mtcars, to get the average horsepower (hp) per cylinder.

from siuba import group_by, summarize, _
from siuba.data import mtcars

(mtcars
  >> group_by(_.cyl)
  >> summarize(avg_hp = _.hp.mean())
  )
Out[1]: 
   cyl      avg_hp
0    4   82.636364
1    6  122.285714
2    8  209.214286

There are three key concepts in this example:

concept example meaning
verb group_by(...) a function that operates on a table, like a DataFrame or SQL table
siu expression _.hp.mean() an expression created with siuba._, that represents actions you want to perform
pipe mtcars >> group_by(...) a syntax that allows you to chain verbs with the >> operator

See the siuba guide overview for a full introduction.

What is a siu expression (e.g. _.cyl == 4)?

A siu expression is a way of specifying what action you want to perform.
This allows siuba verbs to decide how to execute the action, depending on whether your data is a local DataFrame or remote table.

from siuba import _

_.cyl == 4
Out[2]:
█─==
├─█─.
│ ├─_
│ └─'cyl'
└─4

You can also think of siu expressions as a shorthand for a lambda function.

from siuba import _

# lambda approach
mtcars[lambda _: _.cyl == 4]

# siu expression approach
mtcars[_.cyl == 4]
Out[3]: 
     mpg  cyl   disp   hp  drat     wt   qsec  vs  am  gear  carb
2   22.8    4  108.0   93  3.85  2.320  18.61   1   1     4     1
7   24.4    4  146.7   62  3.69  3.190  20.00   1   0     4     2
..   ...  ...    ...  ...   ...    ...    ...  ..  ..   ...   ...
27  30.4    4   95.1  113  3.77  1.513  16.90   1   1     5     2
31  21.4    4  121.0  109  4.11  2.780  18.60   1   1     4     2

[11 rows x 11 columns]

See the siuba guide or read more about lazy expressions.

Using with a SQL database

A killer feature of siuba is that the same analysis code can be run on a local DataFrame, or a SQL source.

In the code below, we set up an example database.

# Setup example data ----
from sqlalchemy import create_engine
from siuba.data import mtcars

# copy pandas DataFrame to sqlite
engine = create_engine("sqlite:///:memory:")
mtcars.to_sql("mtcars", engine, if_exists = "replace")

Next, we use the code from the first example, except now executed a SQL table.

# Demo SQL analysis with siuba ----
from siuba import _, tbl, group_by, summarize, filter

# connect with siuba
tbl_mtcars = tbl(engine, "mtcars")

(tbl_mtcars
  >> group_by(_.cyl)
  >> summarize(avg_hp = _.hp.mean())
  )
Out[4]: 
# Source: lazy query
# DB Conn: Engine(sqlite:///:memory:)
# Preview:
   cyl      avg_hp
0    4   82.636364
1    6  122.285714
2    8  209.214286
# .. may have more rows

See the querying SQL introduction here.

Example notebooks

Below are some examples I've kept as I've worked on siuba.
For the most up to date explanations, see the siuba guide

Testing

Tests are done using pytest.
They can be run using the following.

# start postgres db
docker-compose up
pytest siuba

主要指標

概覽
名稱與所有者machow/siuba
主編程語言Python
編程語言Python (語言數: 2)
平台
許可證MIT License
所有者活动
創建於2019-02-09 18:24:10
推送於2023-09-19 21:04:22
最后一次提交2021-07-01 19:41:42
發布數37
最新版本名稱v0.4.4 (發布於 )
第一版名稱v0.0.7 (發布於 )
用户参与
星數1.2k
關注者數20
派生數50
提交數813
已啟用問題?
問題數305
打開的問題數101
拉請求數150
打開的拉請求數4
關閉的拉請求數25
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?