node-bignum

Big integers for Node.js using OpenSSL

Github星跟蹤圖

bignum

Build Status

Arbitrary precision integral arithmetic for Node.js using
OpenSSL.

This library is based on
node-bigint by
substack, but instead of using libgmp,
it uses the builtin bignum functionality provided by OpenSSL. The
advantage is that OpenSSL is already part of Node.js, so this
library does not add any external dependency whatsoever.

BigInt

JavaScript now has a BigInt object. If you are using Node 10.4 or newer, you should use or migrate to BigInt.

differences

When switching from node-bigint to node-bignum, please be aware of
these differences:

  • Bignum rounds towards zero for integer divisions, e.g. 10 / -3 = -3, whereas bigint
    rounds towards negative infinity, e.g. 10 / -3 = -4.
  • nextPrime() is not supported.
  • sqrt() and root() are not supported.

(Patches for the missing functionality are welcome.)

example

simple.js

var bignum = require('bignum');

var b = bignum('782910138827292261791972728324982')
    .sub('182373273283402171237474774728373')
    .div(8)
;
console.log(b);

$ node simple.js
<Bignum 75067108192986261319312244199576>

perfect.js

Generate the perfect numbers:

// If 2**n-1 is prime, then (2**n-1) * 2**(n-1) is perfect.
var bignum = require('bignum');

for (var n = 0; n < 100; n++) {
    var p = bignum.pow(2, n).sub(1);
    if (p.probPrime(50)) {
        var perfect = p.mul(bignum.pow(2, n - 1));
        console.log(perfect.toString());
    }
}

6
28
496
8128
33550336
8589869056
137438691328
2305843008139952128
2658455991569831744654692615953842176
191561942608236107294793378084303638130997321548169216

methods[0]

bignum(n, base=10)

Create a new bignum from n and a base. n can be a string, integer, or
another bignum.

If you pass in a string you can set the base that string is encoded in.

.toString(base=10)

Print out the bignum instance in the requested base as a string.

bignum.fromBuffer(buf, opts)

Create a new bignum from a Buffer.

The default options are:

{
    endian : 'big',
    size : 1, // number of bytes in each word
}

Note that endian doesn't matter when size = 1. If you wish to reverse the entire buffer byte by byte, pass size: 'auto'.

bignum.prime(bits, safe=true)

Generate a probable prime of length bits. If safe is true, it will be a "safe" prime of the form p=2p'+1 where p' is also prime.

bignum.isBigNum(num)

Return true if num is identified as a bignum instance. Otherwise, return false.

methods[1]

For all of the instance methods below you can write either

bignum.method(x, y, z)

or if x is a bignum instance``

x.method(y, z)

.toNumber()

Turn a bignum into a Number. If the bignum is too big you'll lose
precision or you'll get ±Infinity.

.toBuffer(opts)

Return a new Buffer with the data from the bignum.

The default options are:

{
    endian : 'big',
    size : 1, // number of bytes in each word
}

Note that endian doesn't matter when size = 1. If you wish to reverse the entire buffer byte by byte, pass size: 'auto'.

.add(n)

Return a new bignum containing the instance value plus n.

.sub(n)

Return a new bignum containing the instance value minus n.

.mul(n)

Return a new bignum containing the instance value multiplied by n.

.div(n)

Return a new bignum containing the instance value integrally divided by n.

.abs()

Return a new bignum with the absolute value of the instance.

.neg()

Return a new bignum with the negative of the instance value.

.cmp(n)

Compare the instance value to n. Return a positive integer if > n, a
negative integer if < n, and 0 if == n.

.gt(n)

Return a boolean: whether the instance value is greater than n (> n).

.ge(n)

Return a boolean: whether the instance value is greater than or equal to n
(>= n).

.eq(n)

Return a boolean: whether the instance value is equal to n (== n).

.lt(n)

Return a boolean: whether the instance value is less than n (< n).

.le(n)

Return a boolean: whether the instance value is less than or equal to n
(<= n).

.and(n)

Return a new bignum with the instance value bitwise AND (&)-ed with n.

.or(n)

Return a new bignum with the instance value bitwise inclusive-OR (, )-ed with
n.

.xor(n)

Return a new bignum with the instance value bitwise exclusive-OR (^)-ed with
n.

.mod(n)

Return a new bignum with the instance value modulo n.

m.
.pow(n)

Return a new bignum with the instance value raised to the nth power.

.powm(n, m)

Return a new bignum with the instance value raised to the nth power modulo
m.

.invertm(m)

Compute the multiplicative inverse modulo m.

.rand()

.rand(upperBound)

If upperBound is supplied, return a random bignum between the instance value
and upperBound - 1, inclusive.

Otherwise, return a random bignum between 0 and the instance value - 1,
inclusive.

.probPrime()

Return whether the bignum is:

  • certainly prime (true)
  • probably prime ('maybe')
  • certainly composite (false)

using BN_is_prime_ex.

.sqrt()

Return a new bignum that is the square root. This truncates.

.root(n)

Return a new bignum that is the nth root. This truncates.

.shiftLeft(n)

Return a new bignum that is the 2^n multiple. Equivalent of the <<
operator.

.shiftRight(n)

Return a new bignum of the value integer divided by
2^n. Equivalent of the >> operator.

.gcd(n)

Return the greatest common divisor of the current bignum with n as a new
bignum.

.jacobi(n)

Return the Jacobi symbol (or Legendre symbol if n is prime) of the current
bignum (= a) over n. Note that n must be odd and >= 3. 0 <= a < n.

Returns -1 or 1 as an int (NOT a bignum). Throws an error on failure.

.bitLength()

Return the number of bits used to represent the current bignum.

install

To compile the package, your system needs to be set up for building Node.js
modules.

You can install node-bignum with npm:

npm install bignum

develop

You can clone the git repo and compile with

git clone git://github.com/justmoon/node-bignum.git
cd node-bignum
npm install

Run the tests with

npm test

主要指標

概覽
名稱與所有者justmoon/node-bignum
主編程語言JavaScript
編程語言C++ (語言數: 3)
平台
許可證
所有者活动
創建於2011-11-14 01:45:42
推送於2021-01-27 21:07:24
最后一次提交
發布數20
最新版本名稱v0.13.1 (發布於 2019-12-20 14:00:40)
第一版名稱v0.5.0 (發布於 2012-08-10 08:38:26)
用户参与
星數416
關注者數10
派生數114
提交數258
已啟用問題?
問題數100
打開的問題數34
拉請求數18
打開的拉請求數1
關閉的拉請求數16
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?