imaginaire

NVIDIA PyTorch GAN library with distributed and mixed precision support

  • 所有者: NVlabs/imaginaire
  • 平台:
  • 許可證: Other
  • 分類:
  • 主題:
  • 喜歡:
    0
      比較:

Github星跟蹤圖

Imaginaire

Docs, License, Installation, Model Zoo

Imaginaire is a pytorch library that contains
optimized implementation of several image and video synthesis methods developed at NVIDIA.

License

Imaginaire is released under NVIDIA Software license.
For commercial use, please consult researchinquiries@nvidia.com

What's inside?

IMAGE ALT TEXT

We have a tutorial for each model. Click on the model name, and your browser should take you to the tutorial page for the project.

Supervised Image-to-Image Translation, Algorithm Name, Feature, Publication, :--------------------------------------------, :----------------------------------------------------------------------------------------------------------------, --------------------------------------------------------------:, pix2pixHD, Learn a mapping that converts a semantic image to a high-resolution photorealistic image., Wang et. al. CVPR 2018, SPADE, Improve pix2pixHD on handling diverse input labels and delivering better output quality., Park et. al. CVPR 2019, ### Unsupervised Image-to-Image Translation, Algorithm Name, Feature, Publication, :--------------------------------------------, :----------------------------------------------------------------------------------------------------------------, --------------------------------------------------------------:, UNIT, Learn a one-to-one mapping between two visual domains., Liu et. al. NeurIPS 2017, MUNIT, Learn a many-to-many mapping between two visual domains., Huang et. al. ECCV 2018, FUNIT, Learn a style-guided image translation model that can generate translations in unseen domains., Liu et. al. ICCV 2019, COCO-FUNIT, Improve FUNIT with a content-conditioned style encoding scheme for style code computation., Saito et. al. ECCV 2020, ### Video-to-video Translation, Algorithm Name, Feature, Publication, :--------------------------------------------, :----------------------------------------------------------------------------------------------------------------, --------------------------------------------------------------:, vid2vid, Learn a mapping that converts a semantic video to a photorealistic video., Wang et. al. NeurIPS 2018, fs-vid2vid, Learn a subject-agnostic mapping that converts a semantic video and an example image to a photoreslitic video., Wang et. al. NeurIPS 2019, wc-vid2vid, Improve vid2vid on view consistency and long-term consistency., Mallya et. al. ECCV 2020

主要指標

概覽
名稱與所有者NVlabs/imaginaire
主編程語言Python
編程語言Python (語言數: 6)
平台
許可證Other
所有者活动
創建於2020-07-15 01:17:40
推送於2022-11-29 10:24:50
最后一次提交2021-11-12 11:52:29
發布數0
用户参与
星數4.1k
關注者數108
派生數448
提交數50
已啟用問題?
問題數173
打開的問題數43
拉請求數2
打開的拉請求數9
關閉的拉請求數3
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?