eli5

A library for debugging/inspecting machine learning classifiers and explaining their predictions

Github星跟蹤圖

====
ELI5

.. image:: https://img.shields.io/pypi/v/eli5.svg
:target: https://pypi.python.org/pypi/eli5
:alt: PyPI Version

.. image:: https://travis-ci.org/TeamHG-Memex/eli5.svg?branch=master
:target: https://travis-ci.org/TeamHG-Memex/eli5
:alt: Build Status

.. image:: https://codecov.io/github/TeamHG-Memex/eli5/coverage.svg?branch=master
:target: https://codecov.io/github/TeamHG-Memex/eli5?branch=master
:alt: Code Coverage

.. image:: https://readthedocs.org/projects/eli5/badge/?version=latest
:target: https://eli5.readthedocs.io/en/latest/?badge=latest
:alt: Documentation

ELI5 is a Python package which helps to debug machine learning
classifiers and explain their predictions.

.. image:: https://raw.githubusercontent.com/TeamHG-Memex/eli5/master/docs/source/static/word-highlight.png
:alt: explain_prediction for text data

.. image:: https://raw.githubusercontent.com/TeamHG-Memex/eli5/master/docs/source/static/gradcam-catdog.png
:alt: explain_prediction for image data

It provides support for the following machine learning frameworks and packages:

  • scikit-learn_. Currently ELI5 allows to explain weights and predictions
    of scikit-learn linear classifiers and regressors, print decision trees
    as text or as SVG, show feature importances and explain predictions
    of decision trees and tree-based ensembles. ELI5 understands text
    processing utilities from scikit-learn and can highlight text data
    accordingly. Pipeline and FeatureUnion are supported.
    It also allows to debug scikit-learn pipelines which contain
    HashingVectorizer, by undoing hashing.

  • Keras_ - explain predictions of image classifiers via Grad-CAM visualizations.

  • xgboost_ - show feature importances and explain predictions of XGBClassifier,
    XGBRegressor and xgboost.Booster.

  • LightGBM_ - show feature importances and explain predictions of
    LGBMClassifier and LGBMRegressor.

  • CatBoost_ - show feature importances of CatBoostClassifier,
    CatBoostRegressor and catboost.CatBoost.

  • lightning_ - explain weights and predictions of lightning classifiers and
    regressors.

  • sklearn-crfsuite_. ELI5 allows to check weights of sklearn_crfsuite.CRF
    models.

ELI5 also implements several algorithms for inspecting black-box models
(see Inspecting Black-Box Estimators_):

  • TextExplainer_ allows to explain predictions
    of any text classifier using LIME_ algorithm (Ribeiro et al., 2016).
    There are utilities for using LIME with non-text data and arbitrary black-box
    classifiers as well, but this feature is currently experimental.
  • Permutation importance_ method can be used to compute feature importances
    for black box estimators.

Explanation and formatting are separated; you can get text-based explanation
to display in console, HTML version embeddable in an IPython notebook
or web dashboards, a pandas.DataFrame object if you want to process
results further, or JSON version which allows to implement custom rendering
and formatting on a client.

.. _lightning: https://github.com/scikit-learn-contrib/lightning
.. _scikit-learn: https://github.com/scikit-learn/scikit-learn
.. _sklearn-crfsuite: https://github.com/TeamHG-Memex/sklearn-crfsuite
.. _LIME: https://eli5.readthedocs.io/en/latest/blackbox/lime.html
.. _TextExplainer: https://eli5.readthedocs.io/en/latest/tutorials/black-box-text-classifiers.html
.. _xgboost: https://github.com/dmlc/xgboost
.. _LightGBM: https://github.com/Microsoft/LightGBM
.. _Catboost: https://github.com/catboost/catboost
.. _Keras: https://keras.io/
.. _Permutation importance: https://eli5.readthedocs.io/en/latest/blackbox/permutation_importance.html
.. _Inspecting Black-Box Estimators: https://eli5.readthedocs.io/en/latest/blackbox/index.html

License is MIT.

Check docs <https://eli5.readthedocs.io/>_ for more.


.. image:: https://hyperiongray.s3.amazonaws.com/define-hg.svg
:target: https://www.hyperiongray.com/?pk_campaign=github&pk_kwd=eli5
:alt: define hyperiongray

主要指標

概覽
名稱與所有者TeamHG-Memex/eli5
主編程語言Jupyter Notebook
編程語言Python (語言數: 4)
平台
許可證MIT License
所有者活动
創建於2016-09-15 01:04:57
推送於2025-04-19 23:57:42
最后一次提交2020-01-22 10:39:36
發布數27
最新版本名稱0.10.1 (發布於 )
第一版名稱0.0.1 (發布於 2016-09-15 06:10:25)
用户参与
星數2.8k
關注者數68
派生數330
提交數1.2k
已啟用問題?
問題數258
打開的問題數145
拉請求數140
打開的拉請求數18
關閉的拉請求數10
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?