DQN-tensorflow

Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

  • 所有者: devsisters/DQN-tensorflow
  • 平台:
  • 許可證: MIT License
  • 分類:
  • 主題:
  • 喜歡:
    0
      比較:

Github星跟蹤圖

Human-Level Control through Deep Reinforcement Learning

Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning.

model

This implementation contains:

  1. Deep Q-network and Q-learning
  2. Experience replay memory
    • to reduce the correlations between consecutive updates
  3. Network for Q-learning targets are fixed for intervals
    • to reduce the correlations between target and predicted Q-values

Requirements

Usage

First, install prerequisites with:

$ pip install tqdm gym[all]

To train a model for Breakout:

$ python main.py --env_name=Breakout-v0 --is_train=True
$ python main.py --env_name=Breakout-v0 --is_train=True --display=True

To test and record the screen with gym:

$ python main.py --is_train=False
$ python main.py --is_train=False --display=True

Results

Result of training for 24 hours using GTX 980 ti.

best

Simple Results

Details of Breakout with model m2(red) for 30 hours using GTX 980 Ti.

tensorboard

Details of Breakout with model m3(red) for 30 hours using GTX 980 Ti.

tensorboard

Detailed Results

[1] Action-repeat (frame-skip) of 1, 2, and 4 without learning rate decay

A1_A2_A4_0.00025lr

[2] Action-repeat (frame-skip) of 1, 2, and 4 with learning rate decay

A1_A2_A4_0.0025lr

[1] & [2]

A1_A2_A4_0.00025lr_0.0025lr

[3] Action-repeat of 4 for DQN (dark blue) Dueling DQN (dark green) DDQN (brown) Dueling DDQN (turquoise)

The current hyper parameters and gradient clipping are not implemented as it is in the paper.

A4_duel_double

[4] Distributed action-repeat (frame-skip) of 1 without learning rate decay

A1_0.00025lr_distributed

[5] Distributed action-repeat (frame-skip) of 4 without learning rate decay

A4_0.00025lr_distributed

References

License

MIT License.

主要指標

概覽
名稱與所有者devsisters/DQN-tensorflow
主編程語言Python
編程語言Python (語言數: 1)
平台
許可證MIT License
所有者活动
創建於2016-05-15 11:33:47
推送於2019-04-18 18:36:45
最后一次提交2017-06-28 10:23:20
發布數0
用户参与
星數2.5k
關注者數141
派生數762
提交數100
已啟用問題?
問題數57
打開的問題數35
拉請求數6
打開的拉請求數3
關閉的拉請求數1
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?