broom

Convert statistical analysis objects from R into tidy format

Github星跟蹤圖

broom

CRAN
status
Travis-CI Build
Status
AppVeyor build
status
Coverage
Status

Overview

broom summarizes key information about models in tidy tibble()s.
broom provides three verbs to make it convenient to interact with
model objects:

  • tidy() summarizes information about model components
  • glance() reports information about the entire model
  • augment() adds informations about observations to a dataset

For a detailed introduction, please see vignette("broom").

broom tidies 100+ models from popular modelling packages and almost
all of the model objects in the stats package that comes with base R.
vignette("available-methods") lists method availability.

If you aren’t familiar with tidy data structures and want to know how
they can make your life easier, we highly recommend reading Hadley
Wickham’s Tidy Data.

Installation

# we recommend installing the entire tidyverse modeling set, which includes broom:
install.packages("tidymodels")

# alternatively, to install just broom:
install.packages("broom")

# to get the development version from GitHub:
install.packages("devtools")
devtools::install_github("tidymodels/broom")

If you find a bug, please file a minimal reproducible example in the
issues.

Usage

tidy() produces a tibble() where each row contains information about
an important component of the model. For regression models, this often
corresponds to regression coefficients. This is can be useful if you
want to inspect a model or create custom visualizations.

library(broom)

fit <- lm(Sepal.Width ~ Petal.Length + Petal.Width, iris)
tidy(fit)
#> # A tibble: 3 x 5
#>   term         estimate std.error statistic  p.value
#>   <chr>           <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)     3.59     0.0937     38.3  2.51e-78
#> 2 Petal.Length   -0.257    0.0669     -3.84 1.80e- 4
#> 3 Petal.Width     0.364    0.155       2.35 2.01e- 2

glance() returns a tibble with exactly one row of goodness of fitness
measures and related statistics. This is useful to check for model
misspecification and to compare many models.

glance(fit)
#> # A tibble: 1 x 12
#>   r.squared adj.r.squared sigma statistic p.value    df logLik   AIC   BIC
#>       <dbl>         <dbl> <dbl>     <dbl>   <dbl> <dbl>  <dbl> <dbl> <dbl>
#> 1     0.213         0.202 0.389      19.9 2.24e-8     2  -69.8  148.  160.
#> # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

augment adds columns to a dataset, containing information such as
fitted values, residuals or cluster assignments. All columns added to a
dataset have . prefix to prevent existing columns from being
overwritten.

augment(fit, data = iris)
#> # A tibble: 150 x 11
#>    Sepal.Length Sepal.Width Petal.Length Petal.Width Species .fitted
#>           <dbl>       <dbl>        <dbl>       <dbl> <fct>     <dbl>
#>  1          5.1         3.5          1.4         0.2 setosa     3.30
#>  2          4.9         3            1.4         0.2 setosa     3.30
#>  3          4.7         3.2          1.3         0.2 setosa     3.33
#>  4          4.6         3.1          1.5         0.2 setosa     3.27
#>  5          5           3.6          1.4         0.2 setosa     3.30
#>  6          5.4         3.9          1.7         0.4 setosa     3.30
#>  7          4.6         3.4          1.4         0.3 setosa     3.34
#>  8          5           3.4          1.5         0.2 setosa     3.27
#>  9          4.4         2.9          1.4         0.2 setosa     3.30
#> 10          4.9         3.1          1.5         0.1 setosa     3.24
#> # ... with 140 more rows, and 5 more variables: .resid <dbl>,
#> #   .std.resid <dbl>, .hat <dbl>, .sigma <dbl>, .cooksd <dbl>

Contributing

We welcome contributions of all types!

If you have never made a pull request to an R package before, broom is
an excellent place to start. Find an
issue with the Beginner
Friendly
tag and comment that you’d like to take it on and we’ll help
you get started.

We encourage typo corrections, bug reports, bug fixes and feature
requests. Feedback on the clarity of the documentation is especially
valuable.

If you are interested in adding new tidiers methods to broom, please
read vignette("adding-tidiers").

We have a Contributor Code of Conduct. By
participating in broom you agree to abide by its terms.

主要指標

概覽
名稱與所有者tidymodels/broom
主編程語言R
編程語言R (語言數: 1)
平台
許可證Other
所有者活动
創建於2014-09-11 19:17:04
推送於2025-04-25 20:34:35
最后一次提交
發布數43
最新版本名稱v1.0.8 (發布於 )
第一版名稱v0.1 (發布於 )
用户参与
星數1.5k
關注者數52
派生數305
提交數1.9k
已啟用問題?
問題數717
打開的問題數10
拉請求數417
打開的拉請求數3
關閉的拉請求數107
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?