albumentations

fast image augmentation library and easy to use wrapper around other libraries

Github星跟蹤圖

Albumentations

PyPI version
Build Status
Documentation Status

  • The library works with images in HWC format.
  • The library is faster than other libraries on most of the transformations.
  • Based on numpy, OpenCV, imgaug picking the best from each of them.
  • Simple, flexible API that allows the library to be used in any computer vision pipeline.
  • Large, diverse set of transformations.
  • Easy to extend the library to wrap around other libraries.
  • Easy to extend to other tasks.
  • Supports transformations on images, masks, key points and bounding boxes.
  • Supports python 3.5-3.7
  • Easy integration with PyTorch.
  • Easy transfer from torchvision.
  • Was used to get top results in many DL competitions at Kaggle, topcoder, CVPR, MICCAI.
  • Written by Kaggle Masters.

Table of contents

How to use

All in one showcase notebook - showcase.ipynb

Classification - example.ipynb

Object detection - example_bboxes.ipynb

Non-8-bit images - example_16_bit_tiff.ipynb

Image segmentation example_kaggle_salt.ipynb

Keypoints example_keypoints.ipynb

Custom targets example_multi_target.ipynb

Weather transforms example_weather_transforms.ipynb

Serialization serialization.ipynb

Replay/Deterministic mode replay.ipynb

You can use this Google Colaboratory notebook
to adjust image augmentation parameters and see the resulting images.

parrot

inria

medical

vistas

Authors

Alexander Buslaev

Alex Parinov

Vladimir I. Iglovikov

Evegene Khvedchenya

Mikhail Druzhinin

Installation

PyPI

You can use pip to install albumentations:

pip install albumentations

If you want to get the latest version of the code before it is released on PyPI you can install the library from GitHub:

pip install -U git+https://github.com/albu/albumentations

And it also works in Kaggle GPU kernels (proof)

!pip install albumentations > /dev/null

Conda

To install albumentations using conda we need first to install imgaug via conda-forge collection

conda install -c conda-forge imgaug
conda install albumentations -c albumentations

Documentation

The full documentation is available at albumentations.readthedocs.io.

Pixel-level transforms

Pixel-level transforms will change just an input image and will leave any additional targets such as masks, bounding boxes, and keypoints unchanged. The list of pixel-level transforms:

Spatial-level transforms

Spatial-level transforms will simultaneously change both an input image as well as additional targets such as masks, bounding boxes, and keypoints. The following table shows which additional targets are supported by each transform., Transform, Image, Masks, BBoxes, Keypoints, -------------------------------------------------------------------------------------------------------------------------------------------------------------------, :---:, :---:, :----:, :-------:, CenterCrop, ✓, ✓, ✓, ✓, Crop, ✓, ✓, ✓, ✓, CropNonEmptyMaskIfExists, ✓, ✓, ✓, ✓, ElasticTransform, ✓, ✓, Flip, ✓, ✓, ✓, ✓, GridDistortion, ✓, ✓, GridDropout, ✓, ✓, HorizontalFlip, ✓, ✓, ✓, ✓, IAAAffine, ✓, ✓, ✓, ✓, IAACropAndPad, ✓, ✓, ✓, ✓, IAAFliplr, ✓, ✓, ✓, ✓, IAAFlipud, ✓, ✓, ✓, ✓, IAAPerspective, ✓, ✓, ✓, ✓, IAAPiecewiseAffine, ✓, ✓, ✓, ✓, Lambda, ✓, ✓, ✓, ✓, LongestMaxSize, ✓, ✓, ✓, ✓, MaskDropout, ✓, ✓, NoOp, ✓, ✓, ✓, ✓, OpticalDistortion, ✓, ✓, PadIfNeeded, ✓, ✓, ✓, ✓, RandomCrop, ✓, ✓, ✓, ✓, RandomCropNearBBox, ✓, ✓, ✓, ✓, RandomGridShuffle, ✓, ✓, RandomResizedCrop, ✓, ✓, ✓, ✓, RandomRotate90, ✓, ✓, ✓, ✓, RandomScale, ✓, ✓, ✓, ✓, RandomSizedBBoxSafeCrop, ✓, ✓, ✓, RandomSizedCrop, ✓, ✓, ✓, ✓, Resize, ✓, ✓, ✓, ✓, Rotate, ✓, ✓, ✓, ✓, ShiftScaleRotate, ✓, ✓, ✓, ✓, SmallestMaxSize, ✓, ✓, ✓, ✓, Transpose, ✓, ✓, ✓, ✓, VerticalFlip, ✓, ✓, ✓, ✓, ## Migrating from torchvision to albumentations

Migrating from torchvision to albumentations is simple - you just need to change a few lines of code.
Albumentations has equivalents for common torchvision transforms as well as plenty of transforms that are not presented in torchvision.
migrating_from_torchvision_to_albumentations.ipynb shows how one can migrate code from torchvision to albumentations.

Benchmarking results

To run the benchmark yourself follow the instructions in benchmark/README.md

Results for running the benchmark on first 2000 images from the ImageNet validation set using an Intel Xeon Platinum 8168 CPU.
All outputs are converted to a contiguous NumPy array with the np.uint8 data type.
The table shows how many images per second can be processed on a single core, higher is better., albumentations0.4.2, imgaug0.3.0, torchvision (Pillow-SIMD backend)0.4.1, keras2.3.1, augmentor0.2.6, solt0.1.8, ----------------------, :------------------------------------:, :----------------------------:, :-------------------------------------------------------:, :---------------------------:, :-------------------------------:, :--------------------------:, HorizontalFlip, 2183, 1403, 1757, 1068, 1779, 1031, VerticalFlip, 4217, 2334, 1538, 4196, 1541, 3820, Rotate, 456, 368, 163, 32, 60, 116, ShiftScaleRotate, 800, 549, 146, 34, -, -, Brightness, 2209, 1288, 405, 211, 403, 2070, Contrast, 2215, 1387, 338, -, 337, 2073, BrightnessContrast, 2208, 740, 193, -, 193, 1060, ShiftRGB, 2214, 1303, -, 407, -, -, ShiftHSV, 468, 443, 61, -, -, 144, Gamma, 2281, -, 730, -, -, 925, Grayscale, 5019, 436, 788, -, 1451, 4191, RandomCrop64, 173877, 3340, 43792, -, 36869, 36178, PadToSize512, 2906, -, 553, -, -, 2711, Resize512, 663, 506, 968, -, 954, 673, RandomSizedCrop_64_512, 2565, 933, 1395, -, 1353, 2360, Equalize, 759, 457, -, -, 684, -, Python and library versions: Python 3.7.5 (default, Oct 19 2019, 00:03:48) [GCC 8.3.0], numpy 1.17.3, pillow-simd 6.0.0.post0, opencv-python 4.1.1.26, scikit-image 0.16.2, scipy 1.3.1.

Contributing

To create a pull request to the repository follow the documentation at docs/contributing.rst

Adding new transforms

If you are contributing a new transformation, make sure to update "Pixel-level transforms" or/and "Spatial-level transforms" sections of this file (README.md). To do this, simply run (with python3 only):

python3 tools/make_transforms_docs.py make

and copy/paste the results into the corresponding sections. To validate your modifications, you
can run:

python3 tools/make_transforms_docs.py check README.md

Building the documentation

  1. Go to docs/ directory
    cd docs
    
  2. Install required libraries
    pip install -r requirements.txt
    
  3. Build html files
    make html
    
  4. Open _build/html/index.html in browser.

Alternatively, you can start a web server that rebuilds the documentation
automatically when a change is detected by running make livehtml

Competitions won with the library

Albumentations are widely used in Computer Vision Competitions at Kaggle an other platforms.

You can find their names and links to the solutions here.

Used by





Comments

In some systems, in the multiple GPU regime PyTorch may deadlock the DataLoader if OpenCV was compiled with OpenCL optimizations. Adding the following two lines before the library import may help. For more details https://github.com/pytorch/pytorch/issues/1355

cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)

Citing

If you find this library useful for your research, please consider citing:

@article{2018arXiv180906839B,
    author = {A. Buslaev, A. Parinov, E. Khvedchenya, V.~I. Iglovikov and A.~A. Kalinin},
     title = "{Albumentations: fast and flexible image augmentations}",
   journal = {ArXiv e-prints},
    eprint = {1809.06839},
      year = 2018
}

You can find the full list of papers that cite Albumentations here.

主要指標

概覽
名稱與所有者albumentations-team/albumentations
主編程語言Python
編程語言Python (語言數: 2)
平台
許可證MIT License
所有者活动
創建於2018-06-06 03:10:50
推送於2025-04-20 02:38:54
最后一次提交
發布數48
最新版本名稱2.0.5 (發布於 )
第一版名稱v0.1.1 (發布於 )
用户参与
星數14.8k
關注者數126
派生數1.7k
提交數1.3k
已啟用問題?
問題數1238
打開的問題數233
拉請求數1009
打開的拉請求數5
關閉的拉請求數194
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?