waveglow

A Flow-based Generative Network for Speech Synthesis

Github星跟踪图

WaveGlow

WaveGlow: a Flow-based Generative Network for Speech Synthesis

Ryan Prenger, Rafael Valle, and Bryan Catanzaro

In our recent paper, we propose WaveGlow: a flow-based network capable of
generating high quality speech from mel-spectrograms. WaveGlow combines insights
from Glow and WaveNet in order to provide fast, efficient and high-quality
audio synthesis, without the need for auto-regression. WaveGlow is implemented
using only a single network, trained using only a single cost function:
maximizing the likelihood of the training data, which makes the training
procedure simple and stable.

Our PyTorch implementation produces audio samples at a rate of 4850
kHz on an NVIDIA V100 GPU. Mean Opinion Scores show that it delivers audio
quality as good as the best publicly available WaveNet implementation.

Visit our website for audio samples.

Setup

  1. Clone our repo and initialize submodule

    git clone https://github.com/NVIDIA/waveglow.git
    cd waveglow
    git submodule init
    git submodule update
    
  2. Install requirements pip3 install -r requirements.txt

  3. Install Apex

Generate audio with our pre-existing model

  1. Download our published model
  2. Download mel-spectrograms
  3. Generate audio python3 inference.py -f <(ls mel_spectrograms/*.pt) -w waveglow_256channels.pt -o . --is_fp16 -s 0.6

N.b. use convert_model.py to convert your older models to the current model
with fused residual and skip connections.

Train your own model

  1. Download LJ Speech Data. In this example it's in data/

  2. Make a list of the file names to use for training/testing

    ls data/*.wav, tail -n+10 > train_files.txt
    ls data/*.wav, head -n10 > test_files.txt
    
  3. Train your WaveGlow networks

    mkdir checkpoints
    python train.py -c config.json
    

    For multi-GPU training replace train.py with distributed.py. Only tested with single node and NCCL.

    For mixed precision training set "fp16_run": true on config.json.

  4. Make test set mel-spectrograms

    python mel2samp.py -f test_files.txt -o . -c config.json

  5. Do inference with your network

    ls *.pt > mel_files.txt
    python3 inference.py -f mel_files.txt -w checkpoints/waveglow_10000 -o . --is_fp16 -s 0.6
    

主要指标

概览
名称与所有者NVIDIA/waveglow
主编程语言Python
编程语言Python (语言数: 1)
平台
许可证BSD 3-Clause "New" or "Revised" License
所有者活动
创建于2018-11-08 08:41:44
推送于2023-10-19 23:19:59
最后一次提交2020-09-03 01:20:31
发布数0
用户参与
星数2.3k
关注者数74
派生数538
提交数67
已启用问题?
问题数257
打开的问题数72
拉请求数11
打开的拉请求数7
关闭的拉请求数6
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?