waveglow

A Flow-based Generative Network for Speech Synthesis

Github星跟蹤圖

WaveGlow

WaveGlow: a Flow-based Generative Network for Speech Synthesis

Ryan Prenger, Rafael Valle, and Bryan Catanzaro

In our recent paper, we propose WaveGlow: a flow-based network capable of
generating high quality speech from mel-spectrograms. WaveGlow combines insights
from Glow and WaveNet in order to provide fast, efficient and high-quality
audio synthesis, without the need for auto-regression. WaveGlow is implemented
using only a single network, trained using only a single cost function:
maximizing the likelihood of the training data, which makes the training
procedure simple and stable.

Our PyTorch implementation produces audio samples at a rate of 4850
kHz on an NVIDIA V100 GPU. Mean Opinion Scores show that it delivers audio
quality as good as the best publicly available WaveNet implementation.

Visit our website for audio samples.

Setup

  1. Clone our repo and initialize submodule

    git clone https://github.com/NVIDIA/waveglow.git
    cd waveglow
    git submodule init
    git submodule update
    
  2. Install requirements pip3 install -r requirements.txt

  3. Install Apex

Generate audio with our pre-existing model

  1. Download our published model
  2. Download mel-spectrograms
  3. Generate audio python3 inference.py -f <(ls mel_spectrograms/*.pt) -w waveglow_256channels.pt -o . --is_fp16 -s 0.6

N.b. use convert_model.py to convert your older models to the current model
with fused residual and skip connections.

Train your own model

  1. Download LJ Speech Data. In this example it's in data/

  2. Make a list of the file names to use for training/testing

    ls data/*.wav, tail -n+10 > train_files.txt
    ls data/*.wav, head -n10 > test_files.txt
    
  3. Train your WaveGlow networks

    mkdir checkpoints
    python train.py -c config.json
    

    For multi-GPU training replace train.py with distributed.py. Only tested with single node and NCCL.

    For mixed precision training set "fp16_run": true on config.json.

  4. Make test set mel-spectrograms

    python mel2samp.py -f test_files.txt -o . -c config.json

  5. Do inference with your network

    ls *.pt > mel_files.txt
    python3 inference.py -f mel_files.txt -w checkpoints/waveglow_10000 -o . --is_fp16 -s 0.6
    

主要指標

概覽
名稱與所有者NVIDIA/waveglow
主編程語言Python
編程語言Python (語言數: 1)
平台
許可證BSD 3-Clause "New" or "Revised" License
所有者活动
創建於2018-11-08 08:41:44
推送於2023-10-19 23:19:59
最后一次提交2020-09-03 01:20:31
發布數0
用户参与
星數2.3k
關注者數74
派生數538
提交數67
已啟用問題?
問題數257
打開的問題數72
拉請求數11
打開的拉請求數7
關閉的拉請求數6
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?