AtlasNet

This repository contains the source codes for the paper "AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation ". The network is able to synthesize a mesh (point cloud + connectivity) from a low-resolution point cloud, or from an image.

Github星跟踪图

AtlasNet (http://imagine.enpc.fr/~groueixt/atlasnet/) (https://arxiv.org/abs/1802.05384) (http://imagine.enpc.fr/~groueixt/atlasnet/atlasnet_slides_spotlight_CVPR.pptx)

AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation
Thibault Groueix, Matthew Fisher, Vladimir G. Kim , Bryan C. Russell, Mathieu Aubry
In CVPR, 2018.

Install

This implementation uses Python 3.6, Pytorch, Pymesh, Cuda 10.1.

# Copy/Paste the snippet in a terminal
git clone --recurse-submodules https://github.com/ThibaultGROUEIX/AtlasNet.git
cd AtlasNet 

#Dependencies
conda create -n atlasnet python=3.6 --yes
conda activate atlasnet
conda install  pytorch torchvision cudatoolkit=10.1 -c pytorch --yes
pip install --user --requirement  requirements.txt # pip dependencies
Optional : Compile Chamfer (MIT) + Metro Distance (GPL3 Licence)
# Copy/Paste the snippet in a terminal
python auxiliary/ChamferDistancePytorch/chamfer3D/setup.py install #MIT
cd auxiliary
git clone https://github.com/ThibaultGROUEIX/metro_sources.git
cd metro_sources; python setup.py --build # build metro distance #GPL3
cd ../..

Usage

  • Demo : python train.py --demo
  • Training : python train.py --shapenet13 Monitor on http://localhost:8890/

Quantitative Results, Method, Chamfer (*1), Fscore (*2), Metro (*3), Total Train time (min), ----------------------, ----, ----, -----, -------, Autoencoder 25 Squares, 1.35, 82.3%, 6.82, 731, Autoencoder 1 Sphere, 1.35, 83.3%, 6.94, 548, SingleView 25 Squares, 3.78, 63.1%, 8.94, 1422, SingleView 1 Sphere, 3.76, 64.4%, 9.01, 1297, * (*1) x1000. Computed between 2500 ground truth points and 2500 reconstructed points.

  • (*2) The threshold is 0.001
  • (*3) x100. Metro is ran on unormalized point clouds (which explains a difference with the paper's numbers)

Citing this work

@inproceedings{groueix2018,
          title={{AtlasNet: A Papier-M\^ach\'e Approach to Learning 3D Surface Generation}},
          author={Groueix, Thibault and Fisher, Matthew and Kim, Vladimir G. and Russell, Bryan and Aubry, Mathieu},
          booktitle={Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
          year={2018}
        }

主要指标

概览
名称与所有者ThibaultGROUEIX/AtlasNet
主编程语言Python
编程语言Python (语言数: 3)
平台
许可证MIT License
所有者活动
创建于2018-01-10 18:40:02
推送于2022-10-26 16:26:54
最后一次提交2022-10-26 09:26:54
发布数6
最新版本名称v3.0 (发布于 )
第一版名称v1.0 (发布于 )
用户参与
星数696
关注者数18
派生数121
提交数189
已启用问题?
问题数86
打开的问题数6
拉请求数5
打开的拉请求数0
关闭的拉请求数0
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?