AtlasNet

This repository contains the source codes for the paper "AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation ". The network is able to synthesize a mesh (point cloud + connectivity) from a low-resolution point cloud, or from an image.

Github stars Tracking Chart

AtlasNet (http://imagine.enpc.fr/~groueixt/atlasnet/) (https://arxiv.org/abs/1802.05384) (http://imagine.enpc.fr/~groueixt/atlasnet/atlasnet_slides_spotlight_CVPR.pptx)

AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation
Thibault Groueix, Matthew Fisher, Vladimir G. Kim , Bryan C. Russell, Mathieu Aubry
In CVPR, 2018.

Install

This implementation uses Python 3.6, Pytorch, Pymesh, Cuda 10.1.

# Copy/Paste the snippet in a terminal
git clone --recurse-submodules https://github.com/ThibaultGROUEIX/AtlasNet.git
cd AtlasNet 

#Dependencies
conda create -n atlasnet python=3.6 --yes
conda activate atlasnet
conda install  pytorch torchvision cudatoolkit=10.1 -c pytorch --yes
pip install --user --requirement  requirements.txt # pip dependencies
Optional : Compile Chamfer (MIT) + Metro Distance (GPL3 Licence)
# Copy/Paste the snippet in a terminal
python auxiliary/ChamferDistancePytorch/chamfer3D/setup.py install #MIT
cd auxiliary
git clone https://github.com/ThibaultGROUEIX/metro_sources.git
cd metro_sources; python setup.py --build # build metro distance #GPL3
cd ../..

Usage

  • Demo : python train.py --demo
  • Training : python train.py --shapenet13 Monitor on http://localhost:8890/

Quantitative Results, Method, Chamfer (*1), Fscore (*2), Metro (*3), Total Train time (min), ----------------------, ----, ----, -----, -------, Autoencoder 25 Squares, 1.35, 82.3%, 6.82, 731, Autoencoder 1 Sphere, 1.35, 83.3%, 6.94, 548, SingleView 25 Squares, 3.78, 63.1%, 8.94, 1422, SingleView 1 Sphere, 3.76, 64.4%, 9.01, 1297, * (*1) x1000. Computed between 2500 ground truth points and 2500 reconstructed points.

  • (*2) The threshold is 0.001
  • (*3) x100. Metro is ran on unormalized point clouds (which explains a difference with the paper's numbers)

Citing this work

@inproceedings{groueix2018,
          title={{AtlasNet: A Papier-M\^ach\'e Approach to Learning 3D Surface Generation}},
          author={Groueix, Thibault and Fisher, Matthew and Kim, Vladimir G. and Russell, Bryan and Aubry, Mathieu},
          booktitle={Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
          year={2018}
        }

Main metrics

Overview
Name With OwnerThibaultGROUEIX/AtlasNet
Primary LanguagePython
Program languagePython (Language Count: 3)
Platform
License:MIT License
所有者活动
Created At2018-01-10 18:40:02
Pushed At2022-10-26 16:26:54
Last Commit At2022-10-26 09:26:54
Release Count6
Last Release Namev3.0 (Posted on )
First Release Namev1.0 (Posted on )
用户参与
Stargazers Count696
Watchers Count18
Fork Count121
Commits Count189
Has Issues Enabled
Issues Count86
Issue Open Count6
Pull Requests Count5
Pull Requests Open Count0
Pull Requests Close Count0
项目设置
Has Wiki Enabled
Is Archived
Is Fork
Is Locked
Is Mirror
Is Private