reedsolomon

Reed-Solomon Erasure Code engine in Go, could more than 10GB/s per core

Github星跟蹤圖

Reed-Solomon

GoDoc MIT licensed Build Status Go Report Card Sourcegraph

Introduction:

  • Erasure Codes(based on Reed-Solomon Codes) engine in pure Go.

  • It's a kind of Systematic Codes, which means
    the input data is embedded in the encoded output .

  • High Performance: More than 15GB/s per physics core.

  • High Reliability:

  1. At least two companies are using this library in their storage system.
    (More than dozens PB data)
  2. Full test of galois field calculation and invertible matrices
    (You can also find the mathematical proof in this repo).
  • Based on Klauspost ReedSolomon
    & Intel ISA-L with some additional changes/optimizations.

  • It's the backend of XRS (Erasure Codes
    which can save about 30% I/O in reconstruction process).

Specification

Math

  • Coding over in GF(2^8).

  • Primitive Polynomial: x^8 + x^4 + x^3 + x^2 + 1 (0x1d).

  • Cauchy Matrix is the generator matrix.

    • Any submatrix of encoding matrix is invertible (See the proof here).
  • Galois Field Tool: Generate primitive polynomial
    and it's log, exponent, multiply and inverse tables etc.

  • Inverse Matrices Tool: Calculate the number of inverse matrices
    with specific data & parity number.

XP has written an excellent article (Here, in Chinese) about how
Erasure Codes works and the math behind it. It's a good start to read it.

Accelerate

  • SIMD: Screaming Fast Galois Field Arithmetic Using Intel SIMD Instructions

  • Reduce memory I/O: Write cache-friendly code. In the process of two matrices multiply, we will have to
    read data times, and keep the temporary results, then write to memory. If we could put more data into
    CPU's Cache but not read/write memory again and again, the performance should
    improve a lot.

  • Cache inverse matrices: It'll save thousands ns, not much, but it's still meaningful
    for small data.

  • ...

Here (in Chinese) is an article about
how to write a fast Erasure Codes engine.
(Written by me years ago, need update, but the main ideas still work)

Performance

Performance depends mainly on:

  • CPU instruction extension.

  • Number of data/parity row vectors.

Platform:

AWS c5d.xlarge (Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz)

All test run on a single Core.

Encode:

I/O = (data + parity) * vector_size / cost

Base means no SIMD., Data, Parity, Vector size, AVX512 I/O (MB/S), AVX2 I/O (MB/S), Base I/O (MB/S), -------, ---------, -------------, -------------, ---------------, ---------------, 10, 2, 4KB, 29683.69, 21371.43, 910.45, 10, 2, 1MB, 17664.67, 15505.58, 917.26, 10, 2, 8MB, 10363.05, 9323.60, 914.62, 10, 4, 4KB, 17708.62, 12705.35, 531.82, 10, 4, 1MB, 11970.42, 9804.57, 536.31, 10, 4, 8MB, 7957.9, 6941.69, 534.82, 12, 4, 4KB, 16902.12, 12065.14, 511.95, 12, 4, 1MB, 11478.86, 9392.33, 514.24, 12, 4, 8MB, 7949.81, 6760.49, 513.06, ### Reconstruct:

I/O = (data + reconstruct_data_num) * vector_size / cost, Data, Parity, Vector size, Reconstruct Data Num, AVX512 I/O (MB/S), -------, ---------, -------------, -------------, ---------------, 10, 4, 4KB, 1, 29830.36, 10, 4, 4KB, 2, 21649.61, 10, 4, 4KB, 3, 17088.41, 10, 4, 4KB, 4, 14567.26, ### Update:

I/O = (2 + parity_num + parity_num) * vector_size / cost, Data, Parity, Vector size, AVX512 I/O (MB/S), -------, ---------, -------------, -------------, 10, 4, 4KB, 36444.13, ### Replace:

I/O = (parity_num + parity_num + replace_data_num) * vector_size / cost, Data, Parity, Vector size, Replace Data Num, AVX512 I/O (MB/S), -------, ---------, -------------, -------------, ---------------, 10, 4, 4KB, 1, 78464.33, 10, 4, 4KB, 2, 50068.71, 10, 4, 4KB, 3, 38808.11, 10, 4, 4KB, 4, 32457.60, 10, 4, 4KB, 5, 28679.46, 10, 4, 4KB, 6, 26151.85, PS:

And we must know the benchmark test is quite different with encoding/decoding in practice.
Because in benchmark test loops, the CPU Cache may help a lot.

  • Klauspost ReedSolomon: It's the
    most commonly used Erasure Codes library in Go. Impressive performance, friendly API,
    and it can support multi platforms(with fast Galois Field Arithmetic). Inspired me a lot.

  • Intel ISA-L: The ideas of Cauchy matrix and saving memory
    I/O are from it.

主要指標

概覽
名稱與所有者templexxx/reedsolomon
主編程語言Go
編程語言Go (語言數: 2)
平台
許可證MIT License
所有者活动
創建於2017-04-08 03:49:28
推送於2023-01-15 16:00:13
最后一次提交2023-01-16 00:00:04
發布數9
最新版本名稱v1.1.3 (發布於 2019-12-17 21:46:06)
第一版名稱0.1.0 (發布於 )
用户参与
星數299
關注者數16
派生數35
提交數139
已啟用問題?
問題數11
打開的問題數0
拉請求數15
打開的拉請求數0
關閉的拉請求數0
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?