reedsolomon

Reed-Solomon Erasure Code engine in Go, could more than 10GB/s per core

Github星跟踪图

Reed-Solomon

GoDoc MIT licensed Build Status Go Report Card Sourcegraph

Introduction:

  • Erasure Codes(based on Reed-Solomon Codes) engine in pure Go.

  • It's a kind of Systematic Codes, which means
    the input data is embedded in the encoded output .

  • High Performance: More than 15GB/s per physics core.

  • High Reliability:

  1. At least two companies are using this library in their storage system.
    (More than dozens PB data)
  2. Full test of galois field calculation and invertible matrices
    (You can also find the mathematical proof in this repo).
  • Based on Klauspost ReedSolomon
    & Intel ISA-L with some additional changes/optimizations.

  • It's the backend of XRS (Erasure Codes
    which can save about 30% I/O in reconstruction process).

Specification

Math

  • Coding over in GF(2^8).

  • Primitive Polynomial: x^8 + x^4 + x^3 + x^2 + 1 (0x1d).

  • Cauchy Matrix is the generator matrix.

    • Any submatrix of encoding matrix is invertible (See the proof here).
  • Galois Field Tool: Generate primitive polynomial
    and it's log, exponent, multiply and inverse tables etc.

  • Inverse Matrices Tool: Calculate the number of inverse matrices
    with specific data & parity number.

XP has written an excellent article (Here, in Chinese) about how
Erasure Codes works and the math behind it. It's a good start to read it.

Accelerate

  • SIMD: Screaming Fast Galois Field Arithmetic Using Intel SIMD Instructions

  • Reduce memory I/O: Write cache-friendly code. In the process of two matrices multiply, we will have to
    read data times, and keep the temporary results, then write to memory. If we could put more data into
    CPU's Cache but not read/write memory again and again, the performance should
    improve a lot.

  • Cache inverse matrices: It'll save thousands ns, not much, but it's still meaningful
    for small data.

  • ...

Here (in Chinese) is an article about
how to write a fast Erasure Codes engine.
(Written by me years ago, need update, but the main ideas still work)

Performance

Performance depends mainly on:

  • CPU instruction extension.

  • Number of data/parity row vectors.

Platform:

AWS c5d.xlarge (Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz)

All test run on a single Core.

Encode:

I/O = (data + parity) * vector_size / cost

Base means no SIMD., Data, Parity, Vector size, AVX512 I/O (MB/S), AVX2 I/O (MB/S), Base I/O (MB/S), -------, ---------, -------------, -------------, ---------------, ---------------, 10, 2, 4KB, 29683.69, 21371.43, 910.45, 10, 2, 1MB, 17664.67, 15505.58, 917.26, 10, 2, 8MB, 10363.05, 9323.60, 914.62, 10, 4, 4KB, 17708.62, 12705.35, 531.82, 10, 4, 1MB, 11970.42, 9804.57, 536.31, 10, 4, 8MB, 7957.9, 6941.69, 534.82, 12, 4, 4KB, 16902.12, 12065.14, 511.95, 12, 4, 1MB, 11478.86, 9392.33, 514.24, 12, 4, 8MB, 7949.81, 6760.49, 513.06, ### Reconstruct:

I/O = (data + reconstruct_data_num) * vector_size / cost, Data, Parity, Vector size, Reconstruct Data Num, AVX512 I/O (MB/S), -------, ---------, -------------, -------------, ---------------, 10, 4, 4KB, 1, 29830.36, 10, 4, 4KB, 2, 21649.61, 10, 4, 4KB, 3, 17088.41, 10, 4, 4KB, 4, 14567.26, ### Update:

I/O = (2 + parity_num + parity_num) * vector_size / cost, Data, Parity, Vector size, AVX512 I/O (MB/S), -------, ---------, -------------, -------------, 10, 4, 4KB, 36444.13, ### Replace:

I/O = (parity_num + parity_num + replace_data_num) * vector_size / cost, Data, Parity, Vector size, Replace Data Num, AVX512 I/O (MB/S), -------, ---------, -------------, -------------, ---------------, 10, 4, 4KB, 1, 78464.33, 10, 4, 4KB, 2, 50068.71, 10, 4, 4KB, 3, 38808.11, 10, 4, 4KB, 4, 32457.60, 10, 4, 4KB, 5, 28679.46, 10, 4, 4KB, 6, 26151.85, PS:

And we must know the benchmark test is quite different with encoding/decoding in practice.
Because in benchmark test loops, the CPU Cache may help a lot.

  • Klauspost ReedSolomon: It's the
    most commonly used Erasure Codes library in Go. Impressive performance, friendly API,
    and it can support multi platforms(with fast Galois Field Arithmetic). Inspired me a lot.

  • Intel ISA-L: The ideas of Cauchy matrix and saving memory
    I/O are from it.

主要指标

概览
名称与所有者templexxx/reedsolomon
主编程语言Go
编程语言Go (语言数: 2)
平台
许可证MIT License
所有者活动
创建于2017-04-08 03:49:28
推送于2023-01-15 16:00:13
最后一次提交2023-01-16 00:00:04
发布数9
最新版本名称v1.1.3 (发布于 2019-12-17 21:46:06)
第一版名称0.1.0 (发布于 )
用户参与
星数299
关注者数16
派生数35
提交数139
已启用问题?
问题数11
打开的问题数0
拉请求数15
打开的拉请求数0
关闭的拉请求数0
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?