YOLOv3

YOLOv3 in PyTorch > ONNX > CoreML > iOS

Github星跟踪图

Introduction

This directory contains PyTorch YOLOv3 software developed by Ultralytics LLC, and is freely available for redistribution under the GPL-3.0 license. For more information please visit https://www.ultralytics.com.

Description

The https://github.com/ultralytics/yolov3 repo contains inference and training code for YOLOv3 in PyTorch. The code works on Linux, MacOS and Windows. Training is done on the COCO dataset by default: https://cocodataset.org/#home. Credit to Joseph Redmon for YOLO: https://pjreddie.com/darknet/yolo/.

Requirements

Python 3.7 or later with all of the pip install -U -r requirements.txt packages including:

  • torch >= 1.4
  • opencv-python
  • Pillow

All dependencies are included in the associated docker images. Docker requirements are:

  • Nvidia Driver >= 440.44
  • Docker Engine - CE >= 19.03

Tutorials

Jupyter Notebook

Our Jupyter notebook provides quick training, inference and testing examples.

Training

Start Training: python3 train.py to begin training after downloading COCO data with data/get_coco_dataset.sh. Each epoch trains on 117,263 images from the train and validate COCO sets, and tests on 5000 images from the COCO validate set.

Resume Training: python3 train.py --resume to resume training from weights/last.pt.

Plot Training: from utils import utils; utils.plot_results() plots training results from coco_16img.data, coco_64img.data, 2 example datasets available in the data/ folder, which train and test on the first 16 and 64 images of the COCO2014-trainval dataset.

Image Augmentation

datasets.py applies random OpenCV-powered (https://opencv.org/) augmentation to the input images in accordance with the following specifications. Augmentation is applied only during training, not during inference. Bounding boxes are automatically tracked and updated with the images. 416 x 416 examples pictured below.

Augmentation

主要指标

概览
名称与所有者ultralytics/yolov3
主编程语言Python
编程语言Shell (语言数: 4)
平台Linux, Mac, Windows
许可证GNU Affero General Public License v3.0
所有者活动
创建于2018-08-26 08:57:20
推送于2025-08-26 09:30:21
最后一次提交2025-08-26 14:30:19
发布数12
最新版本名称v9.6.0 (发布于 )
第一版名称v1.0 (发布于 )
用户参与
星数10.5k
关注者数153
派生数3.5k
提交数2.9k
已启用问题?
问题数1828
打开的问题数10
拉请求数371
打开的拉请求数0
关闭的拉请求数100
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?