Catalyst

加速深度学习研发。(Accelerated deep learning R&D)

Catalyst logo

Accelerated DL & RL

Build Status
CodeFactor
Pipi version
Docs
PyPI Status

Twitter
Telegram
Slack
Github contributors

PyTorch framework for DL & RL research and development.
It was developed with a focus on reproducibility,
fast experimentation and code/ideas reusing.
Being able to research/develop something new,
rather than write another regular train loop.
Break the cycle - use the Catalyst!

Part of PyTorch Ecosystem. Part of Catalyst Ecosystem. Project manifest.


Installation

Common installation:

pip install -U catalyst
pip install catalyst[ml]         # installs DL+ML based catalyst
pip install catalyst[rl]         # installs DL+RL based catalyst
pip install catalyst[cv]         # installs DL+CV based catalyst
pip install catalyst[nlp]        # installs DL+NLP based catalyst
pip install catalyst[ecosystem]  # installs Catalyst.Ecosystem for DL/RL R&D
pip install catalyst[contrib]    # installs DL+contrib based catalyst
pip install catalyst[all]        # installs everything. Very convenient to deploy on a new server

Catalyst is compatible with: Python 3.6+. PyTorch 1.0.0+.

Getting started

import torch
from catalyst.dl import SupervisedRunner

# experiment setup
logdir = "./logdir"
num_epochs = 42

# data
loaders = {"train": ..., "valid": ...}

# model, criterion, optimizer
model = Net()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)

# model runner
runner = SupervisedRunner()

# model training
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    scheduler=scheduler,
    loaders=loaders,
    logdir=logdir,
    num_epochs=num_epochs,
    verbose=True,
)

For Catalyst.RL introduction, please follow OpenAI Gym example.

Docs and examples

API documentation and an overview of the library can be found here
Docs.
In the examples folder
of the repository, you can find advanced tutorials and Catalyst best practices.

Infos

To learn more about Catalyst internals and to be aware of the most important features, you can read Catalyst-info – our blog where we regularly write facts about the framework.

We also supervise Awesome Catalyst list – Catalyst-powered projects, tutorials and talks.
Feel free to make a PR with your project to the list. And don't forget to check out current list, there are many interesting projects.

Releases

We deploy a major release once a month with a name like YY.MM.
And micro-releases with framework improvements during a month in the format YY.MM.#.

You can view the changelog on the GitHub Releases page.
Current version: Pipi version

Overview

Catalyst helps you write compact
but full-featured DL & RL pipelines in a few lines of code.
You get a training loop with metrics, early-stopping, model checkpointing
and other features without the boilerplate.

Features

  • Universal train/inference loop.
  • Configuration files for model/data hyperparameters.
  • Reproducibility – all source code and environment variables will be saved.
  • Callbacks – reusable train/inference pipeline parts.
  • Training stages support.
  • Easy customization.
  • PyTorch best practices (SWA, AdamW, Ranger optimizer, OneCycle, FP16 and more).

Structure

  • DL – runner for training and inference,
    all of the classic ML and CV/NLP metrics
    and a variety of callbacks for training, validation
    and inference of neural networks.
  • RL – scalable Reinforcement Learning,
    all popular model-free algorithms implementations and their improvements
    with distributed training support.
  • contrib - additional modules contributed by Catalyst users.
  • data - useful tools and scripts for data processing.

Docker Docker Pulls

Catalyst has its own DockerHub page:

  • catalystteam/catalyst:{CATALYST_VERSION} – simple image with Catalyst
  • catalystteam/catalyst:{CATALYST_VERSION}-fp16 – Catalyst with FP16
  • catalystteam/catalyst:{CATALYST_VERSION}-dev – Catalyst for development with all the requirements
  • catalystteam/catalyst:{CATALYST_VERSION}-dev-fp16 – Catalyst for development with FP16

To build a docker from the sources and get more information and examples,
please visit docker folder.

Contribution guide

We appreciate all contributions.
If you are planning to contribute back bug-fixes,
please do so without any further discussion.
If you plan to contribute new features, utility functions or extensions,
please first open an issue and discuss the feature with us.

License

This project is licensed under the Apache License, Version 2.0 see the LICENSE file for details
License

Citation

Please use this bibtex if you want to cite this repository in your publications:

@misc{catalyst,
    author = {Kolesnikov, Sergey},
    title = {Accelerated DL & RL.},
    year = {2018},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/catalyst-team/catalyst}},
}

Main metrics

Overview
Name With Ownercatalyst-team/catalyst
Primary LanguagePython
Program languagePython (Language Count: 4)
PlatformLinux, Mac, Windows, Windows Subsystem for Linux (WSL)
License:Apache License 2.0
所有者活动
Created At2018-08-20 07:56:13
Pushed At2025-06-27 02:59:05
Last Commit At2022-04-29 07:19:24
Release Count109
Last Release Namev22.04 (Posted on )
First Release Namev19.01-rc1 (Posted on )
用户参与
Stargazers Count3.4k
Watchers Count44
Fork Count394
Commits Count1.7k
Has Issues Enabled
Issues Count355
Issue Open Count0
Pull Requests Count950
Pull Requests Open Count1
Pull Requests Close Count136
项目设置
Has Wiki Enabled
Is Archived
Is Fork
Is Locked
Is Mirror
Is Private