YOLOv5

YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite

Github星跟蹤圖

Documentation

See the YOLOv5 Docs for full documentation on training, testing and deployment.

Quick Start Examples

Python>=3.6.0 is required with all
requirements.txt installed including
PyTorch>=1.7:

$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt

Inference with YOLOv5 and PyTorch Hub. Models automatically download
from the latest YOLOv5 release.

import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5m, yolov5l, yolov5x, custom

# Images
img = 'https://ultralytics.com/images/zidane.jpg'  # or file, Path, PIL, OpenCV, numpy, list

# Inference
results = model(img)

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.

detect.py runs inference on a variety of sources, downloading models automatically from
the latest YOLOv5 release and saving results to runs/detect.

$ python detect.py --source 0  # webcam
                            img.jpg  # image
                            vid.mp4  # video
                            path/  # directory
                            path/*.jpg  # glob
                            'https://youtu.be/Zgi9g1ksQHc'  # YouTube
                            'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

Run commands below to reproduce results
on COCO dataset (dataset auto-downloads on
first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the
largest --batch-size your GPU allows (batch sizes shown for 16 GB devices).

$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
                                         yolov5m                                40
                                         yolov5l                                24
                                         yolov5x                                16

Environments

Get started in seconds with our verified environments. Click each icon below for details.

Integrations

Weights and Biases Roboflow ⭐ NEW
Automatically track and visualize all your YOLOv5 training runs in the cloud with Weights & Biases Label and export your custom datasets directly to YOLOv5 for training with Roboflow

Why YOLOv5

  • COCO AP val denotes mAP@0.5:0.95 metric measured on the 5000-image COCO val2017 dataset over various inference sizes from 256 to 1536.
  • GPU Speed measures average inference time per image on COCO val2017 dataset using a AWS p3.2xlarge V100 instance at batch-size 32.
  • EfficientDet data from google/automl at batch size 8.
  • Reproduce by python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt

Pretrained Checkpoints

Model size(pixels) mAPval0.5:0.95 mAPval0.5 SpeedCPU b1(ms) SpeedV100 b1(ms) SpeedV100 b32(ms) params(M) FLOPs@640 (B)
YOLOv5n 640 28.4 46.0 45 6.3 0.6 1.9 4.5
YOLOv5s 640 37.2 56.0 98 6.4 0.9 7.2 16.5
YOLOv5m 640 45.2 63.9 224 8.2 1.7 21.2 49.0
YOLOv5l 640 48.8 67.2 430 10.1 2.7 46.5 109.1
YOLOv5x 640 50.7 68.9 766 12.1 4.8 86.7 205.7
YOLOv5n6 1280 34.0 50.7 153 8.1 2.1 3.2 4.6
YOLOv5s6 1280 44.5 63.0 385 8.2 3.6 16.8 12.6
YOLOv5m6 1280 51.0 69.0 887 11.1 6.8 35.7 50.0
YOLOv5l6 1280 53.6 71.6 1784 15.8 10.5 76.8 111.4
YOLOv5x6+ TTA 12801536 54.755.4 72.472.3 3136- 26.2- 19.4- 140.7- 209.8-
  • All checkpoints are trained to 300 epochs with default settings and hyperparameters.
  • mAPval values are for single-model single-scale on COCO val2017 dataset.Reproduce by python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65
  • Speed averaged over COCO val images using a AWS p3.2xlarge instance. NMS times (~1 ms/img) not included.Reproduce by python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45
  • TTA Test Time Augmentation includes reflection and scale augmentations.Reproduce by python val.py --data coco.yaml --img 1536 --iou 0.7 --augment

Contribute

We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our Contributing Guide to get started, and fill out the YOLOv5 Survey to send us feedback on your experiences. Thank you to all our contributors!

Contact

For YOLOv5 bugs and feature requests please visit GitHub Issues. For business inquiries or
professional support requests please visit https://ultralytics.com/contact.

主要指標

概覽
名稱與所有者ultralytics/yolov5
主編程語言Python
編程語言Dockerfile (語言數: 3)
平台Amazon AWS, Docker, Google Cloud Platform, Linux
許可證GNU Affero General Public License v3.0
所有者活动
創建於2020-05-18 03:45:11
推送於2025-04-30 10:30:56
最后一次提交2025-04-18 00:43:20
發布數10
最新版本名稱v7.0 (發布於 )
第一版名稱v1.0 (發布於 )
用户参与
星數53.7k
關注者數371
派生數16.9k
提交數2.9k
已啟用問題?
問題數9394
打開的問題數228
拉請求數2197
打開的拉請求數28
關閉的拉請求數610
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?