PowerBI-visuals-decision-tree

R powered custom visual based on rpart package

  • 所有者: microsoft/PowerBI-visuals-decision-tree
  • 平台:
  • 許可證:
  • 分類:
  • 主題:
  • 喜歡:
    0
      比較:

Github星跟蹤圖

PowerBI-visuals-decision-tree

R powered custom visual based on rpart package

Decision tree chart screenshot

Overview

Decision trees are probably one of the most common and easily understood decision support tools.

The decision tree learning automatically find the important decision criteria to consider and uses the most intuitive and explicit visual representation.

Current visual implements the popular and widely used tools of recursive partitioning for decision tree construction. Each leaf of the tree is labeled with a class and a probability distribution over the classes. Beside this we use cross validation to estimate the statistical performance of the decision tree.

If the target variable is categorical or has only few possible values the "Classification Tree" is constructed, whereas if the target variable is numeric the result of the visual is "Regression Tree".

You can control the algorithm parameters and the visual attributes to suit your needs.

Here is how it works:

  • Define the "Target Variable" (exactly one) and "Input Variables" (two or more columns)
  • Controll the basic properties of the tree such as maximum depth and the minimum observation number per leaf
  • If you are the advanced user, control the recursive partitioning and cross-validation parameters

R package dependencies(auto-installed): rpart, rpart.plot, RColorBrewer

Supports R versions: R 3.3.1, R 3.3.0, MRO 3.3.1, MRO 3.3.0, MRO 3.2.2

See also Decision Tree Chart at Microsoft Office store

主要指標

概覽
名稱與所有者microsoft/PowerBI-visuals-decision-tree
主編程語言TypeScript
編程語言R (語言數: 3)
平台
許可證
所有者活动
創建於2016-10-09 11:59:13
推送於2024-04-16 08:25:54
最后一次提交
發布數0
用户参与
星數27
關注者數17
派生數32
提交數18
已啟用問題?
問題數2
打開的問題數1
拉請求數7
打開的拉請求數2
關閉的拉請求數4
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?