pedalnet

Deep Learning for Guitar Effect Emulation

  • 所有者: teddykoker/pedalnet
  • 平台:
  • 許可證: GNU General Public License v3.0
  • 分類:
  • 主題:
  • 喜歡:
    0
      比較:

Github星跟蹤圖

PedalNet

Re-creation of model from Real-Time Guitar Amplifier Emulation with Deep
Learning

See my blog
post

for a more in depth description along with song demos.

Data

data/in.wav - Concatenation of a few samples from the
IDMT-SMT-Guitar dataset
data/ts9_out.wav - Recorded output of in.wav after being passed through an
Ibanez TS9 Tube Screamer (all knobs at 12 o'clock).
models/pedalnet.ckpt - Pretrained model weights

Usage

Run effect on .wav file:
Must be single channel, 44.1 kHz

# must be same data used to train
python prepare_data.py data/in.wav data/out_ts9.wav 

# specify input file and desired output file
python predict.py my_input_guitar.wav my_output.wav 

# if you trained you own model you can pass --model flag
# with path to .ckpt

Train:

python prepare_data.py data/in.wav data/out_ts9.wav # or use your own!
python train.py 
python train.py --gpus "0,1"  # for multiple gpus
python train.py -h  # help (see for other hyperparameters)

Test:

python test.py # test pretrained model
python test.py --model lightning_logs/version_{X}/epoch={EPOCH}.ckpt  # test trained model

Creates files y_test.wav, y_pred.wav, and x_test.wav, for the ground truth
output, predicted output, and input signal respectively.

主要指標

概覽
名稱與所有者teddykoker/pedalnet
主編程語言Python
編程語言Python (語言數: 1)
平台
許可證GNU General Public License v3.0
所有者活动
創建於2020-04-05 19:04:22
推送於2023-07-06 21:58:47
最后一次提交2020-12-14 20:47:02
發布數0
用户参与
星數338
關注者數13
派生數40
提交數9
已啟用問題?
問題數4
打開的問題數0
拉請求數1
打開的拉請求數2
關閉的拉請求數0
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?