Leela Zero

无需人工提供知识的 Go 引擎,以 AlphaGo Zero 论文为蓝本。「Go engine with no human-provided knowledge, modeled after the AlphaGo Zero paper.」

Github星跟蹤圖

Leela Zero

是什么?

一个没有人类知识的围棋程序。使用 MCTS(但没有蒙特卡罗播报)和深度残差卷积神经网络堆栈。

这是对 Alpha Go Zero 论文“不用人类知识就能精通围棋”中所述系统的忠实重新实现。无论出于何种目的,它都是一个开源的 AlphaGo Zero。

等等,什么!

如果你想知道问题所在:你仍然需要网络权重。这个存储库中没有网络权值。如果你设法获得 AlphaGo Zero 权重,这个程序也会同样强大,只要你也获得一些张量处理单元。如果没有这些 TPUs,我建议使用顶级 GPU -- 虽然它与顶级 GPU 不尽相同,但其结果仍然是一个比顶级人类强大得多的引擎。

给我权重

在普通硬件上,重新计算 AlphaGo Zero 权重大约需要1700年

发布这个程序的一个原因是,我们正在运行一个公共的、分布式的工作来重复这项工作。共同努力,尤其是在小范围内开始时,需要不到1700年的时间才能形成一个良好的网络(您可以将其引入该程序,突然变得强大)。

我想帮忙

使用自己的硬件

您需要一台带有 GPU 的 PC,即由 NVIDIA 或 AMD 制造的独立显卡,最好不要太旧,并安装最新的驱动程序。

可以在没有 GPU 的情况下运行该程序,但性能会低得多。如果您的 CPU 不是很新(Haswell 或更新的版本,Ryzen 或更新的版本),那么性能将非常糟糕,尝试加入分布式工作可能毫无用处。但是您仍然可以玩,特别是如果您有耐心的话。

Windows

前往位于 https://github.com/leela-zero/leela-zero/releases 的 Github 发布页面,下载最新版本,解压缩并启动 autogtp.exe。它将自动连接到服务器并在后台执行其工作,并在每次游戏后上载结果。您只需关闭 autogtp 窗口即可将其停止。

macOS 和 Linux

请按照以下说明在 build 子目录中编译 leelaz 和 autogtp 二进制文件。然后按照以下说明中的说明运行 autogtp。当您运行 autogtp 时,将启动贡献。

使用云提供商

许多云公司提供免费试用版(或付费解决方案,此处未讨论),可用于帮助实现 leela-zero 项目。

这里有社区维护的说明:

我现在只想和 Leela Zero 一起玩

这里下载最著名的网络权重文件,或者,如果您更喜欢人类风格,请从此处从人类游戏中训练(较弱)的网络。

如果您使用的是 Windows,请从此处下载正式版本,然后转到本自述文件的“用法”部分。

如果您使用的是 macOS,则可以通过事实上的标准软件包管理器 Homebrew 获得 Leela Zero。您可以使用以下方法安装它:

brew install leela-zero

如果您使用的是 Unix,则必须自己编译程序。请遵循下面的编译说明,然后阅读“用法”部分。

编译 AutoGTP 和/或 Leela Zero

要求

  • GCC,Clang 或 MSVC,任何 C++ 14 编译器
  • Boost 1.58.x 或更高版本,headers 和 program_options,文件系统和系统库(Debian/Ubuntu 上的 libboost-dev,libboost-program-options-dev 和 libboost-filesystem-dev)
  • zlib 库(Debian/Ubuntu 上的 zlib1g 和 zlib1g-dev)
  • 标准 OpenCL C headers(Debian/Ubuntu 上的 opencl-header 或 https://github.com/KhronosGroup/OpenCL-Headers/tree/master/CL)
  • OpenCL ICD 加载器(Debian/Ubuntu 上的 ocl-icd-libopencl1 或在 https://github.com/KhronosGroup/OpenCL-ICD-Loader 上的参考实现)
  • 强烈建议使用支持 OpenCL 的设备,最好是非常快的 GPU,并带有最新的驱动程序(对 OpenCL 1.1 的支持就足够了)。如果这部分是由 Linux 发行版单独打包的(例如 nvidia-opencl-icd),请不要忘记安装 OpenCL 驱动程序。如果没有 GPU,请添加定义“USE_CPU_ONLY”,例如,通过在 cmake 命令行中添加 -DUSE_CPU_ONLY=1。
  • 可选:BLAS库:OpenBLAS(libopenblas-dev)或英特尔 MKL
  • 该程序已在 Windows、Linux 和 macOS 上经过测试。

编译示例 -- Ubuntu 和 类似的

# Test for OpenCL support & compatibility
sudo apt install clinfo && clinfo
# Clone github repo
git clone https://github.com/leela-zero/leela-zero
cd leela-zero
git submodule update --init --recursive
# Install build depedencies
sudo apt install cmake g++ libboost-dev libboost-program-options-dev libboost-filesystem-dev opencl-headers ocl-icd-libopencl1 ocl-icd-opencl-dev zlib1g-dev
# Use a stand alone build directory to keep source dir clean
mkdir build && cd build
# Compile leelaz and autogtp in build subdirectory with cmake
cmake ..
cmake --build .
# Optional: test if your build works correctly
./tests

编译示例 -- macOS

# Clone github repo
git clone https://github.com/leela-zero/leela-zero
cd leela-zero
git submodule update --init --recursive
# Install build depedencies
brew install boost cmake zlib
# Use a stand alone build directory to keep source dir clean
mkdir build && cd build
# Compile leelaz and autogtp in build subdirectory with cmake
cmake ..
cmake --build .
# Optional: test if your build works correctly
./tests

编译示例 -- Windows

# Clone github repo
git clone https://github.com/leela-zero/leela-zero
cd leela-zero
git submodule update --init --recursive
cd msvc
Double-click the leela-zero2015.sln or leela-zero2017.sln corresponding
to the Visual Studio version you have.
# Build from Visual Studio 2015 or 2017

贡献

对于 Windows,可以使用发行包,请参阅“我想帮助”。

Unix和macOS,在完成编译后并在build目录中:

# Copy leelaz binary to autogtp subdirectory
cp leelaz autogtp
# Run AutoGTP to start contributing
./autogtp/autogtp

玩游戏或分析游戏的用法

Leela Zero 不能直接使用。您需要一个图形界面,它将通过 GTP 协议与 Leela Zero 交互。

该引擎支持 GTP 协议版本2

Lizzie 是专门为 Leela Zero 提供的一个客户端,它可以显示实时的搜索概率,一个胜率图,并且有一个自动的游戏分析模式。有适用于 Windows、Mac 和 Linux 的二进制文件。

Sabaki 是具有 GTP 2 功能的非常漂亮的 GUI。

LeelaSabaki 进行了修改,以显示游戏树中的变化和获胜统计数据,以及游戏棋盘上的热图。

GoReviewPartner 是使用机器人(保存为 .rsgf 文件)自动审查和分析游戏的工具,支持 Leela Zero。

很多 go 软件都可以通过 GTP 与引擎连接,所以你也可以看看。

在引擎命令行上添加 --gtp 命令行选项,以启用 Leela Zero 的 GTP 支持。您将需要一个权重文件,并使用 -w 选项指定该文件。

支持所有必需的命令,以及比赛子集和“loadsgf”。全套可以通过“list_commands”看到。可以通过 time_settings 命令在 GTP 上指定时间控制。还支持 kgs-time_settings 扩展名。这些必须由 GTP 2 接口提供,而不是通过命令行提供!

权重格式

权重文件是一个文本文件,每行包含一行系数。网络的布局与 AlphaGo Zero 论文中的相同,但是允许任何数量的剩余块,并且每层可以有任意数量的输出(滤波器),只要后者对于所有层都是相同的即可。该程序将在启动时自动检测金额。第一行包含版本号。

卷积层有2个权重行:
卷积权重
渠道偏差
Batchnorm图层具有2个权重行:
批处理标准
批处理方差
内部产品(完全连接)层具有2个重量行:
层权重
输出偏差

卷积权重按 [output, input, filter_size, filter_size] 顺序,完全连接的层权重按 [output, input] 顺序。首先是残差塔,其次是策略头,然后是值头。除策略开始处和值头处的滤波器为1x1外,所有卷积滤波器为 3x3(如本文所示)

第一层有18个输入,而不是本文中的17个。原始的 AlphaGo Zero 零点设计有一点不平衡,因为黑棋玩家更容易看到棋盘边缘(由于填充在神经网络中的工作原理)。此问题已在 Leela Zero 中修复。输入是:

1) Side to move stones at time T=0
2) Side to move stones at time T=-1  (0 if T=0)
...
8) Side to move stones at time T=-7  (0 if T<=6)
9) Other side stones at time T=0
10) Other side stones at time T=-1   (0 if T=0)
...
16) Other side stones at time T=-7   (0 if T<=6)
17) All 1 if black is to move, 0 otherwise
18) All 1 if white is to move, 0 otherwise

每个都形成一个 19x19 位平面。

在 training/caffe 目录中,有一个 zero.prototxt 文件,其中包含(NVIDIA)-Caffe protobuff 格式的全部40个残留块设计的描述。它可以用来设置 nv-caffe 来训练合适的网络。 zero_mini.prototxt 文件描述了较小的12个剩余块的情况。 training/tf 目录在 tfprocess.py 文件中包含 TensorFlow 格式的网络构建。

专家说明:通道偏差在网络拓扑中似乎是多余的,因为它们后面紧跟着一个 batchnorm 层,该层应规范化均值。实际上,它们对批处理规范层中的中心/比例操作的“beta”参数进行了编码,并针对批处理规范均值/方差调整的效果进行了校正。在推断时,Leela Zero 会将通道偏差融合到 Batchnorm 平均值中,从而抵消它并执行中心操作。这种回旋结构仅是为了向后兼容而存在。如果该段对您没有任何意义,请忽略其存在,仅像通常那样添加通道偏置层,输出将是正确的。

训练

获取数据

在游戏结束时,您可以向 Leela Zero 发送“dump_training”命令,然后发送游戏获胜者(“白色”或“黑色”)和文件名,例如:

dump_training white train.txt

这将以下面描述的格式将训练数据保存(追加)到磁盘,并使用 gzip 压缩。

训练数据在新游戏上重置。

监督学习

Leela 可以将连接的 SGF 游戏的数据库转换为适合学习的数据文件:

dump_supervised sgffile.sgf train.txt

这将导致生成一系列 gzip 压缩文件,以名称 train.txt 开头,并包含从指定 SGF 生成的训练数据,适用于深度学习框架。

训练数据格式

训练数据由带有以下数据的文件组成,所有文件均为文本格式:

16行十六进制字符串,每条361位长,对应于上一节中的前16个输入平面
1行带有1个数字,指示要移动的人,0 =黑色,1 =白色,可以从中重建最后2个输入平面
1行包含362(19x19 +1)个浮点数,表示搜索到的移动结束时的搜索概率(访问计数)。最后一个数字是通过的概率。
1行或1或-1,对应于游戏结果,玩家可以移动

进行训练

为了训练新的网络,您可以使用现有的框架(Caffe,TensorFlow,PyTorch,Theano)以及如上所述的一组训练数据。您仍然需要构造模型描述(为 Caffe 提供了2个示例),解析输入文件格式,并以正确的格式输出权重。

在 training/tf 目录中有 TensorFlow 的完整实现。

使用 TensorFlow 进行监督学习

这需要 TensorFlow 1.4 或更高版本的有效安装:

src/leelaz -w weights.txt
dump_supervised bigsgf.sgf train.out
exit
training/tf/parse.py 6 128 train.out

这将运行并定期将 Leela Zero 权重文件(具有6个块和128个过滤器的网络的文件)以及学习状态的快照转储到磁盘上,该快照由批号编号。如果中断,可以使用以下方法恢复培训:

training/tf/parse.py 6 128 train.out leelaz-model-batchnumber

待完成事项

  • 进一步优化 Winograd 转换。
  • 在搜索中改善 GPU 批处理。
  • 差点玩法的根过滤。
  • 更多后端:
  • 基于 MKL-DNN 的后端。
  • 使用 cuDNN 或 cuBLAS 的 CUDA 特定版本。
  • 使用 MIOpen/ROCm 的 AMD 特定版本。

相关链接

许可

该代码在 GPLv3 或更高版本下发布,但 ThreadPool.h,cl2.hpp,half.hpp 以及 eigen 和 clblast_level3 子目录除外,它们具有在这些文件中提到的特定许可证(与 GPLv3 兼容)。

根据 GNU GPL版本3第7节的附加许可

如果您通过与 NVIDIA CUDA 工具包和/或 NVIDIA CUDA 深度神经网络库和/或 NVIDIA TensorRT 推理库(或这些工具的修改版)中的 NVIDIA Corporation 库链接或组合来修改本程序或任何涵盖的工作,库),其中包含各自许可协议的条款所涵盖的部分,则本程序的许可人授予您额外的许可,以传达所产生的作品。

(The first version translated by vz on 2020.07.19)

概覽

名稱與所有者leela-zero/leela-zero
主編程語言C++
編程語言C++ (語言數: 7)
平台Linux, Mac, Windows
許可證GNU General Public License v3.0
發布數18
最新版本名稱v0.17 (發布於 )
第一版名稱v0.1 (發布於 )
創建於2017-10-24 18:19:43
推送於2023-02-15 21:28:37
最后一次提交2019-04-04 08:38:01
星數5.3k
關注者數290
派生數1k
提交數843
已啟用問題?
問題數2005
打開的問題數362
拉請求數440
打開的拉請求數11
關閉的拉請求數203
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?

Linux Build Status
Windows Build Status

What

A Go program with no human provided knowledge. Using MCTS (but without
Monte Carlo playouts) and a deep residual convolutional neural network stack.

This is a fairly faithful reimplementation of the system described
in the Alpha Go Zero paper "Mastering the Game of Go without Human Knowledge".
For all intents and purposes, it is an open source AlphaGo Zero.

Wait, what?

If you are wondering what the catch is: you still need the network weights.
No network weights are in this repository. If you manage to obtain the
AlphaGo Zero weights, this program will be about as strong, provided you
also obtain a few Tensor Processing Units. Lacking those TPUs, I'd recommend
a top of the line GPU - it's not exactly the same, but the result would still
be an engine that is far stronger than the top humans.

Gimme the weights

Recomputing the AlphaGo Zero weights will take about 1700 years on commodity hardware.

One reason for publishing this program is that we are running a public,
distributed effort to repeat the work. Working together, and especially
when starting on a smaller scale, it will take less than 1700 years to get
a good network (which you can feed into this program, suddenly making it strong).

I want to help

Using your own hardware

You need a PC with a GPU, i.e. a discrete graphics card made by NVIDIA or AMD,
preferably not too old, and with the most recent drivers installed.

It is possible to run the program without a GPU, but performance will be much
lower. If your CPU is not very recent (Haswell or newer, Ryzen or newer),
performance will be outright bad, and it's probably of no use trying to join
the distributed effort. But you can still play, especially if you are patient.

Windows

Head to the Github releases page at https://github.com/leela-zero/leela-zero/releases,
download the latest release, unzip, and launch autogtp.exe. It will connect to
the server automatically and do its work in the background, uploading results
after each game. You can just close the autogtp window to stop it.

macOS and Linux

Follow the instructions below to compile the leelaz and autogtp binaries in
the build subdirectory. Then run autogtp as explained in the
contributing instructions below.
Contributing will start when you run autogtp.

Using a Cloud provider

Many cloud companies offer free trials (or paid solutions, not discussed here)
that are usable for helping the leela-zero project.

There are community maintained instructions available here:

I just want to play with Leela Zero right now

Download the best known network weights file from here, or, if you prefer a more human style,
a (weaker) network trained from human games here.

If you are on Windows, download an official release from here and head to the Usage
section of this README.

If you are on macOS, Leela Zero is available through Homebrew, the de facto standard
package manager. You can install it with:

brew install leela-zero

If you are on Unix, you have to compile the program yourself. Follow
the compilation instructions below and then read the Usage section.

Compiling AutoGTP and/or Leela Zero

Requirements

  • GCC, Clang or MSVC, any C++14 compiler
  • Boost 1.58.x or later, headers and program_options, filesystem and system libraries (libboost-dev, libboost-program-options-dev and libboost-filesystem-dev on Debian/Ubuntu)
  • zlib library (zlib1g & zlib1g-dev on Debian/Ubuntu)
  • Standard OpenCL C headers (opencl-headers on Debian/Ubuntu, or at
    https://github.com/KhronosGroup/OpenCL-Headers/tree/master/CL)
  • OpenCL ICD loader (ocl-icd-libopencl1 on Debian/Ubuntu, or reference implementation at https://github.com/KhronosGroup/OpenCL-ICD-Loader)
  • An OpenCL capable device, preferably a very, very fast GPU, with recent
    drivers is strongly recommended (OpenCL 1.1 support is enough). Don't
    forget to install the OpenCL driver if this part is packaged seperately
    by the Linux distribution (e.g. nvidia-opencl-icd).
    If you do not have a GPU, add the define "USE_CPU_ONLY", for example
    by adding -DUSE_CPU_ONLY=1 to the cmake command line.
  • Optional: BLAS Library: OpenBLAS (libopenblas-dev) or Intel MKL
  • The program has been tested on Windows, Linux and macOS.

Example of compiling - Ubuntu & similar

# Test for OpenCL support & compatibility
sudo apt install clinfo && clinfo

# Clone github repo
git clone https://github.com/leela-zero/leela-zero
cd leela-zero
git submodule update --init --recursive

# Install build depedencies
sudo apt install cmake g++ libboost-dev libboost-program-options-dev libboost-filesystem-dev opencl-headers ocl-icd-libopencl1 ocl-icd-opencl-dev zlib1g-dev

# Use a stand alone build directory to keep source dir clean
mkdir build && cd build

# Compile leelaz and autogtp in build subdirectory with cmake
cmake ..
cmake --build .

# Optional: test if your build works correctly
./tests

Example of compiling - macOS

# Clone github repo
git clone https://github.com/leela-zero/leela-zero
cd leela-zero
git submodule update --init --recursive

# Install build depedencies
brew install boost cmake zlib

# Use a stand alone build directory to keep source dir clean
mkdir build && cd build

# Compile leelaz and autogtp in build subdirectory with cmake
cmake ..
cmake --build .

# Optional: test if your build works correctly
./tests

Example of compiling - Windows

# Clone github repo
git clone https://github.com/leela-zero/leela-zero
cd leela-zero
git submodule update --init --recursive

cd msvc
Double-click the leela-zero2015.sln or leela-zero2017.sln corresponding
to the Visual Studio version you have.
# Build from Visual Studio 2015 or 2017

Contributing

For Windows, you can use a release package, see "I want to help".

Unix and macOS, after finishing the compile and while in the build directory:

# Copy leelaz binary to autogtp subdirectory
cp leelaz autogtp

# Run AutoGTP to start contributing
./autogtp/autogtp

Usage for playing or analyzing games

Leela Zero is not meant to be used directly. You need a graphical interface
for it, which will interface with Leela Zero through the GTP protocol.

The engine supports the GTP protocol, version 2.

Lizzie is a client specifically
for Leela Zero which shows live search probilities, a win rate graph, and has
an automatic game analysis mode. Has binaries for Windows, Mac, and Linux.

Sabaki is a very nice looking GUI with GTP 2
capability.

LeelaSabaki is modified to
show variations and winning statistics in the game tree, as well as a heatmap
on the game board.

GoReviewPartner is a tool for
automated review and analysis of games using bots (saved as .rsgf files),
Leela Zero is supported.

A lot of go software can interface to an engine via GTP,
so look around.

Add the --gtp commandline option on the engine command line to enable Leela
Zero's GTP support. You will need a weights file, specify that with the -w option.

All required commands are supported, as well as the tournament subset, and
"loadsgf". The full set can be seen with "list_commands". The time control
can be specified over GTP via the time_settings command. The kgs-time_settings
extension is also supported. These have to be supplied by the GTP 2 interface,
not via the command line!

Weights format

The weights file is a text file with each line containing a row of coefficients.
The layout of the network is as in the AlphaGo Zero paper, but any number of
residual blocks is allowed, and any number of outputs (filters) per layer,
as long as the latter is the same for all layers. The program will autodetect
the amounts on startup. The first line contains a version number.

  • Convolutional layers have 2 weight rows:
    1. convolution weights
    2. channel biases
  • Batchnorm layers have 2 weight rows:
    1. batchnorm means
    2. batchnorm variances
  • Innerproduct (fully connected) layers have 2 weight rows:
    1. layer weights
    2. output biases

The convolution weights are in [output, input, filter_size, filter_size]
order, the fully connected layer weights are in [output, input] order.
The residual tower is first, followed by the policy head, and then the value
head. All convolution filters are 3x3 except for the ones at the start of the policy and value head, which are 1x1 (as in the paper).

There are 18 inputs to the first layer, instead of 17 as in the paper. The
original AlphaGo Zero design has a slight imbalance in that it is easier
for the black player to see the board edge (due to how padding works in
neural networks). This has been fixed in Leela Zero. The inputs are:

1) Side to move stones at time T=0
2) Side to move stones at time T=-1  (0 if T=0)
...
8) Side to move stones at time T=-7  (0 if T<=6)
9) Other side stones at time T=0
10) Other side stones at time T=-1   (0 if T=0)
...
16) Other side stones at time T=-7   (0 if T<=6)
17) All 1 if black is to move, 0 otherwise
18) All 1 if white is to move, 0 otherwise

Each of these forms a 19 x 19 bit plane.

In the training/caffe directory there is a zero.prototxt file which contains a
description of the full 40 residual block design, in (NVIDIA)-Caffe protobuff
format. It can be used to set up nv-caffe for training a suitable network.
The zero_mini.prototxt file describes a smaller 12 residual block case. The
training/tf directory contains the network construction in TensorFlow format,
in the tfprocess.py file.

Expert note: the channel biases seem redundant in the network topology
because they are followed by a batchnorm layer, which is supposed to normalize
the mean. In reality, they encode "beta" parameters from a center/scale
operation in the batchnorm layer, corrected for the effect of the batchnorm mean/variance adjustment. At inference time, Leela Zero will fuse the channel
bias into the batchnorm mean, thereby offsetting it and performing the center operation. This roundabout construction exists solely for backwards
compatibility. If this paragraph does not make any sense to you, ignore its
existence and just add the channel bias layer as you normally would, output
will be correct.

Training

Getting the data

At the end of the game, you can send Leela Zero a "dump_training" command,
followed by the winner of the game (either "white" or "black") and a filename,
e.g:

dump_training white train.txt

This will save (append) the training data to disk, in the format described below,
and compressed with gzip.

Training data is reset on a new game.

Supervised learning

Leela can convert a database of concatenated SGF games into a datafile suitable
for learning:

dump_supervised sgffile.sgf train.txt

This will cause a sequence of gzip compressed files to be generated,
starting with the name train.txt and containing training data generated from
the specified SGF, suitable for use in a Deep Learning framework.

Training data format

The training data consists of files with the following data, all in text
format:

  • 16 lines of hexadecimal strings, each 361 bits longs, corresponding to the
    first 16 input planes from the previous section
  • 1 line with 1 number indicating who is to move, 0=black, 1=white, from which
    the last 2 input planes can be reconstructed
  • 1 line with 362 (19x19 + 1) floating point numbers, indicating the search probabilities
    (visit counts) at the end of the search for the move in question. The last
    number is the probability of passing.
  • 1 line with either 1 or -1, corresponding to the outcome of the game for the
    player to move

Running the training

For training a new network, you can use an existing framework (Caffe,
TensorFlow, PyTorch, Theano), with a set of training data as described above.
You still need to contruct a model description (2 examples are provided for
Caffe), parse the input file format, and outputs weights in the proper format.

There is a complete implementation for TensorFlow in the training/tf directory.

Supervised learning with TensorFlow

This requires a working installation of TensorFlow 1.4 or later:

src/leelaz -w weights.txt
dump_supervised bigsgf.sgf train.out
exit
training/tf/parse.py 6 128 train.out

This will run and regularly dump Leela Zero weight files (of networks with 6
blocks and 128 filters) to disk, as well as snapshots of the learning state
numbered by the batch number. If interrupted, training can be resumed with:

training/tf/parse.py 6 128 train.out leelaz-model-batchnumber

Todo

  • Further optimize Winograd transformations.
  • Improve GPU batching in the search.
  • Root filtering for handicap play.
  • More backends:
  • MKL-DNN based backend.
  • CUDA specific version using cuDNN or cuBLAS.
  • AMD specific version using MIOpen/ROCm.

Related links

License

The code is released under the GPLv3 or later, except for ThreadPool.h, cl2.hpp, half.hpp and the eigen and clblast_level3 subdirs, which have specific licenses (compatible with GPLv3) mentioned in those files.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or
combining it with NVIDIA Corporation's libraries from the
NVIDIA CUDA Toolkit and/or the NVIDIA CUDA Deep Neural
Network library and/or the NVIDIA TensorRT inference library
(or a modified version of those libraries), containing parts covered
by the terms of the respective license agreement, the licensors of
this Program grant you additional permission to convey the resulting
work.

去到頂部