gobrain

Neural Networks written in go

  • 所有者: goml/gobrain
  • 平台:
  • 許可證: MIT License
  • 分類:
  • 主題:
  • 喜歡:
    0
      比較:

Github星跟蹤圖

gobrain

Neural Networks written in go

GoDoc
Build Status

Getting Started

The version 1.0.0 includes just basic Neural Network functions such as Feed Forward and Elman Recurrent Neural Network.
A simple Feed Forward Neural Network can be constructed and trained as follows:

package main

import (
	"github.com/goml/gobrain"
	"math/rand"
)

func main() {
	// set the random seed to 0
	rand.Seed(0)

	// create the XOR representation patter to train the network
	patterns := [][][]float64{
		{{0, 0}, {0}},
		{{0, 1}, {1}},
		{{1, 0}, {1}},
		{{1, 1}, {0}},
	}

	// instantiate the Feed Forward
	ff := &gobrain.FeedForward{}

	// initialize the Neural Network;
	// the networks structure will contain:
	// 2 inputs, 2 hidden nodes and 1 output.
	ff.Init(2, 2, 1)

	// train the network using the XOR patterns
	// the training will run for 1000 epochs
	// the learning rate is set to 0.6 and the momentum factor to 0.4
	// use true in the last parameter to receive reports about the learning error
	ff.Train(patterns, 1000, 0.6, 0.4, true)
}

After running this code the network will be trained and ready to be used.

The network can be tested running using the Test method, for instance:

ff.Test(patterns)

The test operation will print in the console something like:

[0 0] -> [0.057503945708445]  :  [0]
[0 1] -> [0.930100635071210]  :  [1]
[1 0] -> [0.927809966227284]  :  [1]
[1 1] -> [0.097408795324620]  :  [0]

Where the first values are the inputs, the values after the arrow -> are the output values from the network and the values after : are the expected outputs.

The method Update can be used to predict the output given an input, for example:

inputs := []float64{1, 1}
ff.Update(inputs)

the output will be a vector with values ranging from 0 to 1.

In the example folder there are runnable examples with persistence of the trained network on file.

In example/02 the network is saved on file and in example/03 the network is loaded from file.

To run the example cd in the folder and run

go run main.go

Recurrent Neural Network

This library implements Elman's Simple Recurrent Network.

To take advantage of this, one can use the SetContexts function.

ff.SetContexts(1, nil)

In the example above, a single context will be created initilized with 0.5. It is also possible
to create custom initilized contexts, for instance:

contexts := [][]float64{
	{0.5, 0.8, 0.1}
}

Note that custom contexts must have the same size of hidden nodes + 1 (bias node),
in the example above the size of hidden nodes is 2, thus the context has 3 values.

Changelog

  • 1.0.0 - Added Feed Forward Neural Network with contexts from Elman RNN

主要指標

概覽
名稱與所有者goml/gobrain
主編程語言Go
編程語言Go (語言數: 1)
平台
許可證MIT License
所有者活动
創建於2014-04-29 13:32:36
推送於2020-12-12 12:34:25
最后一次提交2020-12-12 09:34:21
發布數0
用户参与
星數563
關注者數23
派生數59
提交數53
已啟用問題?
問題數6
打開的問題數2
拉請求數7
打開的拉請求數0
關閉的拉請求數1
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?