DeblurGAN

Image Deblurring using Generative Adversarial Networks

DeblurGAN

arXiv Paper Version

Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks.

Our network takes blurry image as an input and procude the corresponding sharp estimate, as in the example:

The model we use is Conditional Wasserstein GAN with Gradient Penalty + Perceptual loss based on VGG-19 activations. Such architecture also gives good results on other image-to-image translation problems (super resolution, colorization, inpainting, dehazing etc.)

How to run

Prerequisites

  • NVIDIA GPU + CUDA CuDNN (CPU untested, feedback appreciated)
  • Pytorch

Download weights from Google Drive . Note that during the inference you need to keep only Generator weights.

Put the weights into

/.checkpoints/experiment_name

To test a model put your blurry images into a folder and run:

python test.py --dataroot /.path_to_your_data --model test --dataset_mode single --learn_residual

Data

Download dataset for Object Detection benchmark from Google Drive

Train

If you want to train the model on your data run the following command to create image pairs:

python datasets/combine_A_and_B.py --fold_A /path/to/data/A --fold_B /path/to/data/B --fold_AB /path/to/data

And then the following command to train the model

python train.py --dataroot /.path_to_your_data --learn_residual --resize_or_crop crop --fineSize CROP_SIZE (we used 256)

Other Implementations

Keras Blog

Keras Repository

Citation

If you find our code helpful in your research or work please cite our paper.

@article{DeblurGAN,
  title = {DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks},
  author = {Kupyn, Orest and Budzan, Volodymyr and Mykhailych, Mykola and Mishkin, Dmytro and Matas, Jiri},
  journal = {ArXiv e-prints},
  eprint = {1711.07064},
  year = 2017
}

Acknowledgments

Code borrows heavily from pix2pix. The images were taken from GoPRO test dataset - DeepDeblur

主要指標

概覽
名稱與所有者KupynOrest/DeblurGAN
主編程語言Python
編程語言Python (語言數: 2)
平台
許可證Other
所有者活动
創建於2017-04-26 14:08:11
推送於2019-12-25 18:40:00
最后一次提交2019-12-25 20:39:59
發布數0
用户参与
星數2.6k
關注者數61
派生數527
提交數71
已啟用問題?
問題數226
打開的問題數148
拉請求數11
打開的拉請求數0
關閉的拉請求數2
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?