dataflowkit

Extract structured data from web sites. Web sites scraping.

Github星跟蹤圖

Dataflow kit

alt tag

Build Status
GoDoc
Go Report Card
codecov

Dataflow kit ("DFK") is a Web Scraping framework for Gophers. It extracts data from web pages, following the specified CSS Selectors.

You can use it in many ways for data mining, data processing or archiving.

The Web Scraping Pipeline

Web-scraping pipeline consists of 3 general components:

  • Downloading an HTML web-page. (Fetch Service)
  • Parsing an HTML page and retrieving data we're interested in (Parse Service)
  • Encoding parsed data to CSV, MS Excel, JSON, JSON Lines or XML format.

Fetch service

fetch.d server is intended for html web pages content download.
Depending on Fetcher type, web page content is downloaded using either Base Fetcher or Chrome fetcher.

Base fetcher uses standard golang http client to fetch pages as is.
It works faster than Chrome fetcher. But Base fetcher cannot render dynamic javascript driven web pages.

Chrome fetcher is intended for rendering dynamic javascript based content. It sends requests to Chrome running in headless mode.

A fetched web page is passed to parse.d service.

Parse service

parse.d is the service that extracts data from downloaded web page following the rules listed in configuration JSON file. Extracted data is returned in CSV, MS Excel, JSON or XML format.

Note: Sometimes Parse service cannot extract data from some pages retrieved by default Base fetcher. Empty results may be returned while parsing Java Script generated pages. Parse service then attempts to force Chrome fetcher to render the same dynamic javascript driven content automatically. Have a look at https://scrape.dataflowkit.com/persons/page-0 which is a sample of JavaScript driven web page.

Dataflow kit benefits:

  • Scraping of JavaScript generated pages;

  • Data extraction from paginated websites;

  • Processing infinite scrolled pages.

  • Sсraping of websites behind login form;

  • Cookies and sessions handling;

  • Following links and detailed pages processing;

  • Managing delays between requests per domain;

  • Following robots.txt directives;

  • Saving intermediate data in Diskv or Mongodb. Storage interface is flexible enough to add more storage types easily;

  • Encode results to CSV, MS Excel, JSON(Lines), XML formats;

  • Dataflow kit is fast. It takes about 4-6 seconds to fetch and then parse 50 pages.

  • Dataflow kit is suitable to process quite large volumes of data. Our tests show the time needed to parse appr. 4 millions of pages is about 7 hours. 

Installation

go get -u github.com/slotix/dataflowkit

Usage

Docker

  1. Install Docker and Docker Compose

  2. Start services.

cd $GOPATH/src/github.com/slotix/dataflowkit && docker-compose up

This command fetches docker images automatically and starts services.

  1. Launch parsing in the second terminal window by sending POST request to parse daemon. Some json configuration files for testing are available in /examples folder.
curl -XPOST  127.0.0.1:8001/parse --data-binary "@$GOPATH/src/github.com/slotix/dataflowkit/examples/books.toscrape.com.json"

Here is the sample json configuration file:

{
	"name":"collection",
	"request":{
	   "url":"https://example.com"
	},
	"fields":[
	   {
		  "name":"Title",
		  "selector":".product-container a",
		  "extractor":{
			 "types":["text", "href"],
			 "filters":[
				"trim",
				"lowerCase"
			 ],
			 "params":{
				"includeIfEmpty":false
			 }
		  }
	   },
	   {
		  "name":"Image",
		  "selector":"#product-container img",
		  "extractor":{
			 "types":["alt","src","width","height"],
			 "filters":[
				"trim",
				"upperCase"
			 ]
		  }
	   },
	   {
		  "name":"Buyinfo",
		  "selector":".buy-info",
		  "extractor":{
			 "types":["text"],
			 "params":{
				"includeIfEmpty":false
			 }
		  }
	   }
	],
	"paginator":{
	   "selector":".next",
	   "attr":"href",
	   "maxPages":3
	},
	"format":"json",
	"fetcherType":"chrome",
	"paginateResults":false
}

Read more information about scraper configuration JSON files at our GoDoc reference

Extractors and filters are described at https://godoc.org/github.com/slotix/dataflowkit/extract

  1. To stop services just press Ctrl+C and run
cd $GOPATH/src/github.com/slotix/dataflowkit && docker-compose down --remove-orphans --volumes

IMAFGE ALT CLI Dataflow kit web scraping framework

Click on image to see CLI in action.

Manual way

  1. Start Chrome docker container
docker run --init -it --rm -d --name chrome --shm-size=1024m -p=127.0.0.1:9222:9222 --cap-add=SYS_ADMIN \
  yukinying/chrome-headless-browser

Headless Chrome is used for fetching web pages to feed a Dataflow kit parser.

  1. Build and run fetch.d service
cd $GOPATH/src/github.com/slotix/dataflowkit/cmd/fetch.d && go build && ./fetch.d
  1. In new terminal window build and run parse.d service
cd $GOPATH/src/github.com/slotix/dataflowkit/cmd/parse.d && go build && ./parse.d
  1. Launch parsing. See step 3. from the previous section.

Run tests

  • docker-compose -f test-docker-compose.yml up -d
  • ./test.sh
  • To stop services just run docker-compose -f test-docker-compose.yml down

Front-End

Try https://dataflowkit.com/dfk Front-end with Point-and-click interface to Dataflow kit services. It generates JSON config file and sends POST request to DFK Parser

IMAGE ALT Dataflow kit web scraping framework

Click on image to see Dataflow kit in action.

License

This is Free Software, released under the BSD 3-Clause License.

Contributing

You are welcome to contribute to our project.

alt tag

主要指標

概覽
名稱與所有者slotix/dataflowkit
主編程語言Go
編程語言Go (語言數: 6)
平台
許可證BSD 3-Clause "New" or "Revised" License
所有者活动
創建於2017-02-09 15:08:15
推送於2023-03-07 00:03:55
最后一次提交2020-06-12 22:57:19
發布數0
用户参与
星數681
關注者數23
派生數80
提交數885
已啟用問題?
問題數13
打開的問題數0
拉請求數2
打開的拉請求數4
關閉的拉請求數1
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?