neocortex

Run trained deep neural networks in the browser or node.js

  • 所有者: scienceai/neocortex
  • 平台:
  • 許可證: Apache License 2.0
  • 分類:
  • 主題:
  • 喜歡:
    0
      比較:

Github星跟蹤圖

PROJECT PAGE AND EXAMPLES

Run trained deep neural networks in the browser or node.js. Currently supports serialization from trained Keras models (note: not up-to-date with the current Keras API).

build status
npm version

Background

Training deep neural networks on any meaningful dataset requires massive computational resources and lots and lots of time. However, the forward-pass prediction phase is relatively cheap - typically there is no backpropagation, computational graphs, loss functions, or optimization algorithms to worry about.

What do you do when you have a trained deep neural network and now wish to use it to power a part of your client-facing web application? Traditionally, you would deploy your model on a server and call it from your web application through an API. But what if you can deploy it in the browser alongside the rest of your webapp? Computation would be offloaded entirely to your end-user!

Perhaps most users will not be able to run billion-parameter networks in their browsers quite yet, but smaller networks are certainly within the realm of possibility.

The goal of this project is to provide a lightweight javascript library that can take a serialized Keras, Caffe, Torch or [insert other deep learning framework here] model, together with pre-trained weights, pack it in your webapp, and be up and running. Currently supports serialization from trained Keras models.

Examples

  • MNIST multi-layer perceptron / src / demo

  • CIFAR-10 VGGNet-like convolutional neural network / src / demo

  • LSTM recurrent neural network for classifying astronomical object names / src / demo

You can also run the examples on your local machine at http://localhost:8000:

$ npm run examples-server

Usage

See the source code of the examples above. In particular, the CIFAR-10 example demonstrates a multi-threaded implementation using Web Workers.

In the browser:

<script src="neocortex.min.js"></script>
<script>
  // use neural network here
</script>

In node.js:

$ npm install neocortex-js
import NeuralNet from 'neocortex-js';

The core steps involve:

  1. Instantiate neural network class
let nn = new NeuralNet({
  // relative URL in browser/webworker, absolute path in node.js
  modelFilePath: 'model.json',
  arrayType: 'float64', // float64 or float32
});
  1. Load the model JSON file, then once loaded, feed input data into neural network
nn.init().then(() => {
  let predictions = nn.predict(input);
  // make use of predictions
});

Build

To build the project yourself, for both the browser (outputs to build/neocortex.min.js) and node.js (outputs to dist/):

$ npm install
$ npm run build

To build just for the browser:

$ npm run build-browser

Keras

A script to serialize a trained Keras model together with its hdf5 formatted weights is located in the utils/ folder. It currently only supports sequential models with layers listed below. Implementation of graph models is planned.

Functions and layers currently implemented are listed below. More forthcoming.

  • Activation functions: linear, relu, sigmoid, hard_sigmoid, tanh, softmax

  • Advanced activation layers: leakyReLULayer, parametricReLULayer, parametricSoftplusLayer, thresholdedLinearLayer, thresholdedReLuLayer

  • Basic layers: denseLayer, dropoutLayer, flattenLayer, mergeLayer

  • Recurrent layers: rGRULayer (gated-recurrent unit or GRU), rLSTMLayer (long short-term memory or LSTM)

  • Convolutional layers: convolution2DLayer, maxPooling2DLayer, convolution1DLayer, maxPooling1DLayer

  • Embedding layers: embeddingLayer (maps indices to corresponding embedding vectors)

  • Normalization layers: batchNormalizationLayer

Tests

$ npm test

Browser testing is planned.

Credits

Thanks to @halmos for the logo.

Citation

DOI

License

Apache 2.0

主要指標

概覽
名稱與所有者scienceai/neocortex
主編程語言JavaScript
編程語言JavaScript (語言數: 3)
平台
許可證Apache License 2.0
所有者活动
創建於2015-09-19 03:09:45
推送於2016-11-11 02:44:47
最后一次提交2016-02-13 21:20:11
發布數1
最新版本名稱0.5.0 (發布於 )
第一版名稱0.5.0 (發布於 )
用户参与
星數275
關注者數16
派生數26
提交數205
已啟用問題?
問題數10
打開的問題數6
拉請求數1
打開的拉請求數2
關閉的拉請求數0
项目设置
已啟用Wiki?
已存檔?
是復刻?
已鎖定?
是鏡像?
是私有?