Tokenizers

为研究和生产而优化的快速先进的分词器。「💥 Fast State-of-the-Art Tokenizers optimized for Research and Production」

Github星跟踪图

Provides an implementation of today's most used tokenizers, with a focus on performance and
versatility.

Main features:

  • Train new vocabularies and tokenize, using today's most used tokenizers.
  • Extremely fast (both training and tokenization), thanks to the Rust implementation. Takes
    less than 20 seconds to tokenize a GB of text on a server's CPU.
  • Easy to use, but also extremely versatile.
  • Designed for research and production.
  • Normalization comes with alignments tracking. It's always possible to get the part of the
    original sentence that corresponds to a given token.
  • Does all the pre-processing: Truncate, Pad, add the special tokens your model needs.

Performances

Performances can vary depending on hardware, but running the ~/bindings/python/benches/test_tiktoken.py should give the following on a g6 aws instance:
image

Bindings

We provide bindings to the following languages (more to come!):

Installation

You can install from source using:

pip install git+https://github.com/huggingface/tokenizers.git#subdirectory=bindings/python

our install the released versions with

pip install tokenizers

Quick example using Python:

Choose your model between Byte-Pair Encoding, WordPiece or Unigram and instantiate a tokenizer:

from tokenizers import Tokenizer
from tokenizers.models import BPE

tokenizer = Tokenizer(BPE())

You can customize how pre-tokenization (e.g., splitting into words) is done:

from tokenizers.pre_tokenizers import Whitespace

tokenizer.pre_tokenizer = Whitespace()

Then training your tokenizer on a set of files just takes two lines of codes:

from tokenizers.trainers import BpeTrainer

trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
tokenizer.train(files=["wiki.train.raw", "wiki.valid.raw", "wiki.test.raw"], trainer=trainer)

Once your tokenizer is trained, encode any text with just one line:

output = tokenizer.encode("Hello, y'all! How are you 😁 ?")
print(output.tokens)
# ["Hello", ",", "y", "'", "all", "!", "How", "are", "you", "[UNK]", "?"]

Check the documentation
or the quicktour to learn more!

主要指标

概览
名称与所有者huggingface/tokenizers
主编程语言Rust
编程语言Rust (语言数: 8)
平台
许可证Apache License 2.0
所有者活动
创建于2019-11-01 17:52:20
推送于2025-06-06 03:37:47
最后一次提交
发布数142
最新版本名称v0.21.1 (发布于 )
第一版名称v0.0.3 (发布于 )
用户参与
星数9.8k
关注者数123
派生数0.9k
提交数1.9k
已启用问题?
问题数1062
打开的问题数67
拉请求数539
打开的拉请求数23
关闭的拉请求数156
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?