tf-explain

Interpretability Methods for tf.keras models with Tensorflow 2.0

Github星跟踪图

tf-explain

Pypi Version
Build Status
Documentation Status
![Python Versions](https://img.shields.io/badge/python-3.6%20, %203.7-%23EBBD68.svg)
Tensorflow Versions
Code style: black

tf-explain implements interpretability methods as Tensorflow 2.0 callbacks to ease neural network's understanding.
See Introducing tf-explain, Interpretability for Tensorflow 2.0

Documentation: https://tf-explain.readthedocs.io

Installation

tf-explain is available on PyPi as an alpha release. To install it:

virtualenv venv -p python3.6
pip install tf-explain

tf-explain is compatible with Tensorflow 2. It is not declared as a dependency
to let you choose between CPU and GPU versions. Additionally to the previous install, run:

# For CPU version
pip install tensorflow==2.0.0
# For GPU version
pip install tensorflow-gpu==2.0.0

Available Methods

  1. Activations Visualization
  2. Vanilla Gradients
  3. Gradients*Inputs
  4. Occlusion Sensitivity
  5. Grad CAM (Class Activation Maps)
  6. SmoothGrad
  7. Integrated Gradients

Activations Visualization

Visualize how a given input comes out of a specific activation layer

from tf_explain.callbacks.activations_visualization import ActivationsVisualizationCallback

model = [...]

callbacks = [
    ActivationsVisualizationCallback(
        validation_data=(x_val, y_val),
        layers_name=["activation_1"],
        output_dir=output_dir,
    ),
]

model.fit(x_train, y_train, batch_size=2, epochs=2, callbacks=callbacks)

Vanilla Gradients

Visualize gradients importance on input image

from tf_explain.callbacks.vanilla_gradients import VanillaGradientsCallback

model = [...]

callbacks = [
    VanillaGradientsCallback(
        validation_data=(x_val, y_val),
        class_index=0,
        output_dir=output_dir,
    ),
]

model.fit(x_train, y_train, batch_size=2, epochs=2, callbacks=callbacks)

Gradients*Inputs

Variant of Vanilla Gradients ponderating gradients with input values

from tf_explain.callbacks.gradients_inputs import GradientsInputsCallback

model = [...]

callbacks = [
    GradientsInputsCallback(
        validation_data=(x_val, y_val),
        class_index=0,
        output_dir=output_dir,
    ),
]

model.fit(x_train, y_train, batch_size=2, epochs=2, callbacks=callbacks)

Occlusion Sensitivity

Visualize how parts of the image affects neural network's confidence by occluding parts iteratively

from tf_explain.callbacks.occlusion_sensitivity import OcclusionSensitivityCallback

model = [...]

callbacks = [
    OcclusionSensitivityCallback(
        validation_data=(x_val, y_val),
        class_index=0,
        patch_size=4,
        output_dir=output_dir,
    ),
]

model.fit(x_train, y_train, batch_size=2, epochs=2, callbacks=callbacks)

Grad CAM

Visualize how parts of the image affects neural network's output by looking into the activation maps

From Grad-CAM: Visual Explanations from Deep Networks
via Gradient-based Localization

from tf_explain.callbacks.grad_cam import GradCAMCallback

model = [...]

callbacks = [
    GradCAMCallback(
        validation_data=(x_val, y_val),
        class_index=0,
        output_dir=output_dir,
    )
]

model.fit(x_train, y_train, batch_size=2, epochs=2, callbacks=callbacks)

SmoothGrad

Visualize stabilized gradients on the inputs towards the decision

From SmoothGrad: removing noise by adding noise

from tf_explain.callbacks.smoothgrad import SmoothGradCallback

model = [...]

callbacks = [
    SmoothGradCallback(
        validation_data=(x_val, y_val),
        class_index=0,
        num_samples=20,
        noise=1.,
        output_dir=output_dir,
    )
]

model.fit(x_train, y_train, batch_size=2, epochs=2, callbacks=callbacks)

Integrated Gradients

Visualize an average of the gradients along the construction of the input towards the decision

From Axiomatic Attribution for Deep Networks

from tf_explain.callbacks.integrated_gradients import IntegratedGradientsCallback

model = [...]

callbacks = [
    IntegratedGradientsCallback(
        validation_data=(x_val, y_val),
        class_index=0,
        n_steps=20,
        output_dir=output_dir,
    )
]

model.fit(x_train, y_train, batch_size=2, epochs=2, callbacks=callbacks)

Visualizing the results

When you use the callbacks, the output files are created in the logs directory.

You can see them in Tensorboard with the following command: tensorboard --logdir logs

Roadmap

Contributing

To contribute to the project, please read the dedicated section.

主要指标

概览
名称与所有者sicara/tf-explain
主编程语言Python
编程语言Python (语言数: 2)
平台
许可证MIT License
所有者活动
创建于2019-07-15 08:26:24
推送于2024-06-03 10:38:45
最后一次提交2022-06-30 10:14:18
发布数8
最新版本名称v0.3.1 (发布于 )
第一版名称0.0.1 (发布于 )
用户参与
星数1k
关注者数47
派生数110
提交数208
已启用问题?
问题数93
打开的问题数42
拉请求数92
打开的拉请求数5
关闭的拉请求数2
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?