text-detection

Text detection with mainly MSER and SWT

Github星跟踪图

text-detection

This project aims to detect text regions in images using only image processing techniques with MSER (Maximally Stable Extremal Regions) and SWT (Stroke Width Transform). And also Tesseract-OCR
tool is used optionally, as assistance to the algorithm.

Please cite original paper:

Özgen, A.C., Fasounaki, M. and Ekenel, H.K., 2018, May. Text detection in natural and computer-generated images. In 2018 26th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.

INSTALLING

Insall requirements.txt file

pip install -r requirements.txt

Or you can create conda environment with

conda env create -f requirements.yml

For OCR assistance, install Tesseract from package manager

sudo apt install tesseract-ocr

USAGE

Basic usage is

python text_detect.py -i <input-image>

You can give output path

python text_detect.py -i images/scenetext01.jpg -o <output-image>

More options available

python text_detect.py -i images/scenetext01.jpg -o <output-file> -d <light,dark,both,both+> -t

Option -i is image path, -o is output path, -d is SWT direction (default is both+), -t option chooses if Tesseract will be used. Normally Tesseract runs poorly if whole image given as input.
But I use it for final decision of bounding boxes and it is not required all the time.

If you want to give whole image to Tesseract to see the impact of the algorithm, try this.

python text_detection.py -i images/scenetext01.jpg -f

For more detail (seeing intermediate steps), the usage given below is also available.

python text_detection_detail.py -i images/scenetext01.jpg -d both+ -t

Sample Results

sample1

sample2

sample3

sample4

REFERENCES

B. Epshtein, E. Ofek, and Y. Wexler. Detecting text in
natural scenes with stroke width transform. In 2010 IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition, pages 2963–2970, June 2010.

Á. González, L. M. Bergasa, J. J. Yebes, and S. Bronte.
Text location in complex images. In Proceedings of the 21st
International Conference on Pattern Recognition
(ICPR2012), pages 617–620, Nov 2012.

Y. Li and H. Lu. Scene text detection via stroke width.
In Proceedings of the 21st International Conference on
Pattern Recognition (ICPR2012), pages 681–684, Nov
2012.

主要指标

概览
名称与所有者azmiozgen/text-detection
主编程语言Python
编程语言Python (语言数: 1)
平台
许可证GNU General Public License v3.0
所有者活动
创建于2018-01-23 17:20:00
推送于2024-11-12 20:26:00
最后一次提交2024-11-12 23:25:47
发布数0
用户参与
星数199
关注者数15
派生数59
提交数27
已启用问题?
问题数9
打开的问题数0
拉请求数3
打开的拉请求数0
关闭的拉请求数0
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?