state-of-the-art-result-for-machine-learning-problems

This repository provides state of the art (SoTA) results for all machine learning problems. We do our best to keep this repository up to date. If you do find a problem's SoTA result is out of date or missing, please raise this as an issue or submit Google form (with this information: research paper name, dataset, metric, source code and year). We will fix it immediately.

  • 所有者: RedditSota/state-of-the-art-result-for-machine-learning-problems
  • 平台:
  • 许可证: Apache License 2.0
  • 分类:
  • 主题:
  • 喜欢:
    0
      比较:

Github星跟踪图

State-of-the-art result for all Machine Learning Problems

LAST UPDATE: 20th Februray 2019

NEWS: I am looking for a Collaborator esp who does research in NLP, Computer Vision and Reinforcement learning. If you are not a researcher, but you are willing, contact me. Email me: yxt.stoaml@gmail.com

This repository provides state-of-the-art (SoTA) results for all machine learning problems. We do our best to keep this repository up to date. If you do find a problem's SoTA result is out of date or missing, please raise this as an issue (with this information: research paper name, dataset, metric, source code and year). We will fix it immediately.

You can also submit this Google Form if you are new to Github.

This is an attempt to make one stop for all types of machine learning problems state of the art result. I can not do this alone. I need help from everyone. Please submit the Google form/raise an issue if you find SOTA result for a dataset. Please share this on Twitter, Facebook, and other social media.

This summary is categorized into:

Supervised Learning

NLP

1. Language Modelling

2. Machine Translation

3. Text Classification

4. Natural Language Inference

Leader board:

Stanford Natural Language Inference (SNLI)

MultiNLI

5. Question Answering

Leader Board

SQuAD

6. Named entity recognition

7. Abstractive Summarization

Research Paper, Datasets, Metric, Source Code, Year
------------, -------------, ------------, -------------, -------------
Cutting-off redundant repeating generations for neural abstractive summarization, DUC-2004Gigaword, DUC-2004 ROUGE-1: 32.28 ROUGE-2: 10.54 ROUGE-L: 27.80 Gigaword ROUGE-1: 36.30 ROUGE-2: 17.31 ROUGE-L: 33.88 , NOT YET AVAILABLE, 2017
Convolutional Sequence to Sequence, DUC-2004Gigaword, DUC-2004 ROUGE-1: 33.44 ROUGE-2: 10.84 ROUGE-L: 26.90 Gigaword ROUGE-1: 35.88 ROUGE-2: 27.48 ROUGE-L: 33.29 , PyTorch, 2017

8. Dependency Parsing

Research Paper, Datasets, Metric, Source Code, Year
------------, -------------, ------------, -------------, -------------
Globally Normalized Transition-Based Neural Networks, Final CoNLL ’09 dependency parsing , 94.08% UAS accurancy 92.15% LAS accurancy, SyntaxNet , 2017

Computer Vision

1. Classification

2. Instance Segmentation

3. Visual Question Answering

4. Person Re-identification

Speech

Speech SOTA

1. ASR

Semi-supervised Learning

Computer Vision

Unsupervised Learning

Computer Vision

1. Generative Model

NLP

Machine Translation

Transfer Learning

Reinforcement Learning

Email: yxt.stoaml@gmail.com

主要指标

概览
名称与所有者RedditSota/state-of-the-art-result-for-machine-learning-problems
主编程语言
编程语言 (语言数: 0)
平台
许可证Apache License 2.0
所有者活动
创建于2017-11-09 01:21:40
推送于2019-06-25 14:09:52
最后一次提交2019-03-19 20:13:25
发布数0
用户参与
星数8.9k
关注者数869
派生数1.3k
提交数169
已启用问题?
问题数38
打开的问题数14
拉请求数20
打开的拉请求数0
关闭的拉请求数5
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?