rustlearn

Machine learning crate for Rust

  • 所有者: maciejkula/rustlearn
  • 平台:
  • 许可证: Apache License 2.0
  • 分类:
  • 主题:
  • 喜欢:
    0
      比较:

Github星跟踪图

rustlearn

Circle CI
Crates.io

A machine learning package for Rust.

For full usage details, see the API documentation.

Introduction

This crate contains reasonably effective
implementations of a number of common machine learning algorithms.

At the moment, rustlearn uses its own basic dense and sparse array types, but I will be happy
to use something more robust once a clear winner in that space emerges.

Features

Matrix primitives

Models

All the models support fitting and prediction on both dense and sparse data, and the implementations
should be roughly competitive with Python sklearn implementations, both in accuracy and performance.

Cross-validation

Metrics

Parallelization

A number of models support both parallel model fitting and prediction.

Model serialization

Model serialization is supported via serde.

Using rustlearn

Usage should be straightforward.

  • import the prelude for alll the linear algebra primitives and common traits:
use rustlearn::prelude::*;
  • import individual models and utilities from submodules:
use rustlearn::prelude::*;

use rustlearn::linear_models::sgdclassifier::Hyperparameters;
// more imports

Examples

Logistic regression

use rustlearn::prelude::*;
use rustlearn::datasets::iris;
use rustlearn::cross_validation::CrossValidation;
use rustlearn::linear_models::sgdclassifier::Hyperparameters;
use rustlearn::metrics::accuracy_score;


let (X, y) = iris::load_data();

let num_splits = 10;
let num_epochs = 5;

let mut accuracy = 0.0;

for (train_idx, test_idx) in CrossValidation::new(X.rows(), num_splits) {

    let X_train = X.get_rows(&train_idx);
    let y_train = y.get_rows(&train_idx);
    let X_test = X.get_rows(&test_idx);
    let y_test = y.get_rows(&test_idx);

    let mut model = Hyperparameters::new(X.cols())
                                    .learning_rate(0.5)
                                    .l2_penalty(0.0)
                                    .l1_penalty(0.0)
                                    .one_vs_rest();

    for _ in 0..num_epochs {
        model.fit(&X_train, &y_train).unwrap();
    }

    let prediction = model.predict(&X_test).unwrap();
    accuracy += accuracy_score(&y_test, &prediction);
}

accuracy /= num_splits as f32;

Random forest

use rustlearn::prelude::*;

use rustlearn::ensemble::random_forest::Hyperparameters;
use rustlearn::datasets::iris;
use rustlearn::trees::decision_tree;

let (data, target) = iris::load_data();

let mut tree_params = decision_tree::Hyperparameters::new(data.cols());
tree_params.min_samples_split(10)
    .max_features(4);

let mut model = Hyperparameters::new(tree_params, 10)
    .one_vs_rest();

model.fit(&data, &target).unwrap();

// Optionally serialize and deserialize the model

// let encoded = bincode::serialize(&model).unwrap();
// let decoded: OneVsRestWrapper<RandomForest> = bincode::deserialize(&encoded).unwrap();

let prediction = model.predict(&data).unwrap();

Contributing

Pull requests are welcome.

To run basic tests, run cargo test.

Running cargo test --features "all_tests" --release runs all tests, including generated and slow tests.
Running cargo bench --features bench (only on the nightly branch) runs benchmarks.

主要指标

概览
名称与所有者maciejkula/rustlearn
主编程语言Rust
编程语言Rust (语言数: 3)
平台
许可证Apache License 2.0
所有者活动
创建于2015-12-03 21:48:17
推送于2021-06-07 09:09:59
最后一次提交2020-06-20 19:01:58
发布数6
最新版本名称v0.5.0 (发布于 )
第一版名称0.2.0 (发布于 2015-12-14 19:36:18)
用户参与
星数637
关注者数22
派生数54
提交数76
已启用问题?
问题数17
打开的问题数11
拉请求数33
打开的拉请求数2
关闭的拉请求数0
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?