requests-futures

Asynchronous Python HTTP Requests for Humans using Futures

  • 所有者: ross/requests-futures
  • 平台:
  • 许可证: Other
  • 分类:
  • 主题:
  • 喜欢:
    0
      比较:

Github星跟踪图

Asynchronous Python HTTP Requests for Humans

.. image:: https://travis-ci.org/ross/requests-futures.png?branch=master
:target: https://travis-ci.org/ross/requests-futures

Small add-on for the python requests_ http library. Makes use of python 3.2's
concurrent.futures_ or the backport_ for prior versions of python.

The additional API and changes are minimal and strives to avoid surprises.

The following synchronous code:

.. code-block:: python

from requests import Session

session = Session()
# first requests starts and blocks until finished
response_one = session.get('http://httpbin.org/get')
# second request starts once first is finished
response_two = session.get('http://httpbin.org/get?foo=bar')
# both requests are complete
print('response one status: {0}'.format(response_one.status_code))
print(response_one.content)
print('response two status: {0}'.format(response_two.status_code))
print(response_two.content)

Can be translated to make use of futures, and thus be asynchronous by creating
a FuturesSession and catching the returned Future in place of Response. The
Response can be retrieved by calling the result method on the Future:

.. code-block:: python

from requests_futures.sessions import FuturesSession

session = FuturesSession()
# first request is started in background
future_one = session.get('http://httpbin.org/get')
# second requests is started immediately
future_two = session.get('http://httpbin.org/get?foo=bar')
# wait for the first request to complete, if it hasn't already
response_one = future_one.result()
print('response one status: {0}'.format(response_one.status_code))
print(response_one.content)
# wait for the second request to complete, if it hasn't already
response_two = future_two.result()
print('response two status: {0}'.format(response_two.status_code))
print(response_two.content)

By default a ThreadPoolExecutor is created with 8 workers. If you would like to
adjust that value or share a executor across multiple sessions you can provide
one to the FuturesSession constructor.

.. code-block:: python

from concurrent.futures import ThreadPoolExecutor
from requests_futures.sessions import FuturesSession

session = FuturesSession(executor=ThreadPoolExecutor(max_workers=10))
# ...

As a shortcut in case of just increasing workers number you can pass
max_workers straight to the FuturesSession constructor:

.. code-block:: python

from requests_futures.sessions import FuturesSession
session = FuturesSession(max_workers=10)

FutureSession will use an existing session object if supplied:

.. code-block:: python

from requests import session
from requests_futures.sessions import FuturesSession
my_session = session()
future_session = FuturesSession(session=my_session)

That's it. The api of requests.Session is preserved without any modifications
beyond returning a Future rather than Response. As with all futures exceptions
are shifted (thrown) to the future.result() call so try/except blocks should be
moved there.

Canceling queued requests (a.k.a cleaning up after yourself)

If you know that you won't be needing any additional responses from futures that
haven't yet resolved, it's a good idea to cancel those requests. You can do this
by using the session as a context manager:

.. code-block:: python

from requests_futures.sessions import FuturesSession
with FuturesSession(max_workers=1) as session:
    future = session.get('https://httpbin.org/get')
    future2 = session.get('https://httpbin.org/delay/10')
    future3 = session.get('https://httpbin.org/delay/10')
    response = future.result()

In this example, the second or third request will be skipped, saving time and
resources that would otherwise be wasted.

Iterating over a list of requests responses

Without preserving the requests order:

.. code-block:: python

from concurrent.futures import as_completed
from requests_futures.sessions import FuturesSession
with FuturesSession() as session:
    futures = [session.get('https://httpbin.org/delay/{}'.format(i % 3)) for i in range(10)]
    for future in as_completed(futures):
        resp = future.result()
        print(resp.json()['url'])

Working in the Background

Additional processing can be done in the background using requests's hooks_
functionality. This can be useful for shifting work out of the foreground, for
a simple example take json parsing.

.. code-block:: python

from pprint import pprint
from requests_futures.sessions import FuturesSession

session = FuturesSession()

def response_hook(resp, *args, **kwargs):
    # parse the json storing the result on the response object
    resp.data = resp.json()

future = session.get('http://httpbin.org/get', hooks={
    'response': response_hook,
})
# do some other stuff, send some more requests while this one works
response = future.result()
print('response status {0}'.format(response.status_code))
# data will have been attached to the response object in the background
pprint(response.data)

Hooks can also be applied to the session.

.. code-block:: python

from pprint import pprint
from requests_futures.sessions import FuturesSession

def response_hook(resp, *args, **kwargs):
    # parse the json storing the result on the response object
    resp.data = resp.json()

session = FuturesSession()
session.hooks['response'] = response_hook

future = session.get('http://httpbin.org/get')
# do some other stuff, send some more requests while this one works
response = future.result()
print('response status {0}'.format(response.status_code))
# data will have been attached to the response object in the background
pprint(response.data)   pprint(response.data)

A more advanced example that adds an elapsed property to all requests.

.. code-block:: python

from pprint import pprint
from requests_futures.sessions import FuturesSession
from time import time


class ElapsedFuturesSession(FuturesSession):

    def request(self, method, url, hooks=None, *args, **kwargs):
        start = time()
        if hooks is None:
            hooks = {}
        
        def timing(r, *args, **kwargs):
            r.elapsed = time() - start

        try:
            if isinstance(hooks['response'], (list, tuple)):
                # needs to be first so we don't time other hooks execution
                hooks['response'].insert(0, timing)
            else:
                hooks['response'] = [timing, hooks['response']]
        except KeyError:
            hooks['response'] = timing

        return super(ElapsedFuturesSession, self) \
            .request(method, url, hooks=hooks, *args, **kwargs)



session = ElapsedFuturesSession()
future = session.get('http://httpbin.org/get')
# do some other stuff, send some more requests while this one works
response = future.result()
print('response status {0}'.format(response.status_code))
print('response elapsed {0}'.format(response.elapsed))

Using ProcessPoolExecutor

Similarly to ThreadPoolExecutor, it is possible to use an instance of
ProcessPoolExecutor. As the name suggest, the requests will be executed
concurrently in separate processes rather than threads.

.. code-block:: python

from concurrent.futures import ProcessPoolExecutor
from requests_futures.sessions import FuturesSession

session = FuturesSession(executor=ProcessPoolExecutor(max_workers=10))
# ... use as before

.. HINT::
Using the ProcessPoolExecutor is useful, in cases where memory
usage per request is very high (large response) and cycling the interpretor
is required to release memory back to OS.

A base requirement of using ProcessPoolExecutor is that the Session.request,
FutureSession all be pickle-able.

This means that only Python 3.5 is fully supported, while Python versions
3.4 and above REQUIRE an existing requests.Session instance to be passed
when initializing FutureSession. Python 2.X and < 3.4 are currently not
supported.

.. code-block:: python

# Using python 3.4
from concurrent.futures import ProcessPoolExecutor
from requests import Session
from requests_futures.sessions import FuturesSession

session = FuturesSession(executor=ProcessPoolExecutor(max_workers=10),
                         session=Session())
# ... use as before

In case pickling fails, an exception is raised pointing to this documentation.

.. code-block:: python

# Using python 2.7
from concurrent.futures import ProcessPoolExecutor
from requests import Session
from requests_futures.sessions import FuturesSession

session = FuturesSession(executor=ProcessPoolExecutor(max_workers=10),
                         session=Session())
Traceback (most recent call last):
...
RuntimeError: Cannot pickle function. Refer to documentation: https://github.com/ross/requests-futures/#using-processpoolexecutor

.. IMPORTANT::

  • Python >= 3.4 required
  • A session instance is required when using Python < 3.5
  • If sub-classing FuturesSession it must be importable (module global)

Installation

pip install requests-futures

.. _requests: https://github.com/kennethreitz/requests
.. _concurrent.futures: http://docs.python.org/dev/library/concurrent.futures.html
.. _backport: https://pypi.python.org/pypi/futures
.. _hooks: http://docs.python-requests.org/en/master/user/advanced/#event-hooks

主要指标

概览
名称与所有者ross/requests-futures
主编程语言Python
编程语言Python (语言数: 2)
平台
许可证Other
所有者活动
创建于2013-03-21 14:20:03
推送于2025-06-19 13:25:28
最后一次提交
发布数5
最新版本名称v1.0.2 (发布于 2024-11-15 14:12:53)
第一版名称v0.9.8 (发布于 2018-10-20 18:40:39)
用户参与
星数2.1k
关注者数42
派生数150
提交数194
已启用问题?
问题数88
打开的问题数0
拉请求数66
打开的拉请求数0
关闭的拉请求数17
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?