mrjob

在Hadoop或Amazon Web Services上运行MapReduce作业。(Run MapReduce jobs on Hadoop or Amazon Web Services)

  • 所有者: Yelp/mrjob
  • 平台:
  • 许可证: Other
  • 分类:
  • 主题:
  • 喜欢:
    0
      比较:

Github星跟踪图

mrjob: the Python MapReduce library

.. image:: https://github.com/Yelp/mrjob/raw/master/docs/logos/logo_medium.png

mrjob is a Python 2.7/3.4+ package that helps you write and run Hadoop
Streaming jobs.

Stable version (v0.7.1) documentation <http://mrjob.readthedocs.org/en/stable/>_

Development version documentation <http://mrjob.readthedocs.org/en/latest/>_

.. image:: https://travis-ci.org/Yelp/mrjob.png
:target: https://travis-ci.org/Yelp/mrjob

mrjob fully supports Amazon's Elastic MapReduce (EMR) service, which allows you
to buy time on a Hadoop cluster on an hourly basis. mrjob has basic support for Google Cloud Dataproc (Dataproc)
which allows you to buy time on a Hadoop cluster on a minute-by-minute basis. It also works with your own
Hadoop cluster.

Some important features:

  • Run jobs on EMR, Google Cloud Dataproc, your own Hadoop cluster, or locally (for testing).

  • Write multi-step jobs (one map-reduce step feeds into the next)

  • Easily launch Spark jobs on EMR or your own Hadoop cluster

  • Duplicate your production environment inside Hadoop

    • Upload your source tree and put it in your job's $PYTHONPATH
    • Run make and other setup scripts
    • Set environment variables (e.g. $TZ)
    • Easily install python packages from tarballs (EMR only)
    • Setup handled transparently by mrjob.conf config file
  • Automatically interpret error logs

  • SSH tunnel to hadoop job tracker (EMR only)

  • Minimal setup

    • To run on EMR, set $AWS_ACCESS_KEY_ID and $AWS_SECRET_ACCESS_KEY
    • To run on Dataproc, set $GOOGLE_APPLICATION_CREDENTIALS
    • No setup needed to use mrjob on your own Hadoop cluster

Installation

pip install mrjob

As of v0.7.0, Amazon Web Services and Google Cloud Services are optional
depedencies. To use these, install with the aws and google targets,
respectively. For example:

pip install mrjob[aws]

A Simple Map Reduce Job

Code for this example and more live in mrjob/examples.

.. code-block:: python

"""The classic MapReduce job: count the frequency of words.
"""
from mrjob.job import MRJob
import re

WORD_RE = re.compile(r"[\w']+")

class MRWordFreqCount(MRJob):

   def mapper(self, _, line):
       for word in WORD_RE.findall(line):
           yield (word.lower(), 1)

   def combiner(self, word, counts):
       yield (word, sum(counts))

   def reducer(self, word, counts):
       yield (word, sum(counts))

if name == 'main':
MRWordFreqCount.run()

Try It Out!

::

# locally
python mrjob/examples/mr_word_freq_count.py README.rst > counts
# on EMR
python mrjob/examples/mr_word_freq_count.py README.rst -r emr > counts
# on Dataproc
python mrjob/examples/mr_word_freq_count.py README.rst -r dataproc > counts
# on your Hadoop cluster
python mrjob/examples/mr_word_freq_count.py README.rst -r hadoop > counts

Setting up EMR on Amazon

  • create an Amazon Web Services account <http://aws.amazon.com/>_
  • Get your access and secret keys (click "Security Credentials" on
    your account page <http://aws.amazon.com/account/>_)
  • Set the environment variables $AWS_ACCESS_KEY_ID and
    $AWS_SECRET_ACCESS_KEY accordingly

Setting up Dataproc on Google

  • Create a Google Cloud Platform account <http://cloud.google.com/>_, see top-right

  • Learn about Google Cloud Platform "projects" <https://cloud.google.com/docs/overview/#projects>_

  • Select or create a Cloud Platform Console project <https://console.cloud.google.com/project>_

  • Enable billing for your project <https://console.cloud.google.com/billing>_

  • Go to the API Manager <https://console.cloud.google.com/apis>_ and search for / enable the following APIs...

    • Google Cloud Storage
    • Google Cloud Storage JSON API
    • Google Cloud Dataproc API
  • Under Credentials, Create Credentials and select Service account key. Then, select New service account, enter a Name and select Key type JSON.

  • Install the Google Cloud SDK <https://cloud.google.com/sdk/>_

Advanced Configuration

To run in other AWS regions, upload your source tree, run make, and use
other advanced mrjob features, you'll need to set up mrjob.conf. mrjob looks
for its conf file in:

  • The contents of $MRJOB_CONF
  • ~/.mrjob.conf
  • /etc/mrjob.conf

See the mrjob.conf documentation <http://packages.python.org/mrjob/guides/configs-basics.html>_ for more information.

  • Source code <http://github.com/Yelp/mrjob>__
  • Documentation <https://mrjob.readthedocs.io/en/latest/>_
  • Discussion group <http://groups.google.com/group/mrjob>_

Reference

  • Hadoop Streaming <http://hadoop.apache.org/docs/stable1/streaming.html>_
  • Elastic MapReduce <http://aws.amazon.com/documentation/elasticmapreduce/>_
  • Google Cloud Dataproc <https://cloud.google.com/dataproc/overview>_

More Information

  • PyCon 2011 mrjob overview <http://blip.tv/pycon-us-videos-2009-2010-2011/pycon-2011-mrjob-distributed-computing-for-everyone-4898987/>_
  • Introduction to Recommendations and MapReduce with mrjob <http://aimotion.blogspot.com/2012/08/introduction-to-recommendations-with.html>_
    (source code <https://github.com/marcelcaraciolo/recsys-mapreduce-mrjob>__)
  • Social Graph Analysis Using Elastic MapReduce and PyPy <http://postneo.com/2011/05/04/social-graph-analysis-using-elastic-mapreduce-and-pypy>_

Thanks to Greg Killion <mailto:greg@blind-works.net>_
(ROMEO ECHO_DELTA <http://www.romeoechodelta.net/>_) for the logo.

主要指标

概览
名称与所有者Yelp/mrjob
主编程语言Python
编程语言Makefile (语言数: 3)
平台
许可证Other
所有者活动
创建于2010-10-13 18:35:21
推送于2023-03-24 10:20:24
最后一次提交2020-11-16 14:20:52
发布数63
最新版本名称v0.7.4 (发布于 2020-09-17 15:12:41)
第一版名称v0.1.0-pre1 (发布于 2010-10-21 18:13:37)
用户参与
星数2.6k
关注者数105
派生数588
提交数8.6k
已启用问题?
问题数1300
打开的问题数207
拉请求数781
打开的拉请求数7
关闭的拉请求数134
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?