moviebox

? Machine learning movie recommender

Contents

Description

Moviebox is a content based machine learning recommending system build with the powers of tf-idf and cosine similarities.

Initially, a natural number, that corresponds to the ID of a unique movie title, is accepted as input from the user. Through tf-idf the plot summaries of 5000 different movies that reside in the dataset, are analyzed and vectorized. Next, a number of movies is chosen as recommendations based on their cosine similarity with the vectorized input movie. Specifically, the cosine value of the angle between any two non-zero vectors, resulting from their inner product, is used as the primary measure of similarity. Thus, only movies whose story and meaning are as close as possible to the initial one, are displayed to the user as recommendations.

The dataset in use is a random subset of the Carnegie Mellon Movie Summary Corpus, and it consists of 5000 movie titles along with their respective categories and plots.

Install

pip install moviebox

Python 2.7+ or Python 3.4+ is required to install or build the code.

CLI

$ moviebox --help

  Machine learning movie recommending system

  Usage
    $ moviebox [<options> ...]

  Options
    --help, -h              Display help message
    --search, -s            Search movie by ID
    --movie, -m <int>       Input movie ID [Can be any integer 0-4999]
    --plot, -p              Display movie plot
    --interactive, -i       Display process info
    --list, -l              List available movie titles
    --recommend, -r <int>   Number of recommendations [Can be any integer 1-30]
    --version, -v           Display installed version

  Examples
    $ moviebox --help
    $ moviebox --search
    $ moviebox --movie 2874
    $ moviebox -m 2874 --recommend 3
    $ moviebox -m 2874 -r 3 --plot
    $ moviebox -m 2874 -r 3 -p --interactive

To see all movies with corresponding ID's, take a look at this list.

Usage

from moviebox.recommender import recommender

movieID = 2874  # Movie ID of `Asterix & Obelix: God save Britannia`
recommendationsNumber = 3  # Get 3 movie recommendations
showPlots = True  # Display the plot of each recommended movie
interactive = True  # Display process info while running

# Generate the recommendations
recommender(
    movieID=movieID,
    recommendationsNumber=recommendationsNumber,
    showPlots=showPlots,
    interactive=interactive)

API

recommender(movieID, recommendationsNumber, showPlots, interactive)

E.g. recommender(movieID=2874, recommendationsNumber=3, showPlots=True, interactive=True)

movieID

  • Type: Integer

  • Default Value: 2874

  • Optional: True

Input movie ID. Any integer between [0, 4999] can be selected.

recommendationsNumber

  • Type: Integer

  • Default Value: 3

  • Optional: True

Number of movie recommendations to be generated. Any integer between [1, 30] can be selected.

showPlots

  • Type: Boolean

  • Default Value: False

  • Optional: True

Display the plot summary of each recommended movie.

interactive

  • Type: Boolean

  • Default Value: False

  • Optional: True

Display process-related information while running.

Development

  • Clone this repository to your local machine
  • Navigate to your clone cd moviebox
  • Install the dependencies fab install or pip install -r requirements.txt
  • Check for errors fab test
  • Run the API fab start
  • Build the package fab dist
  • Cleanup compiled files fab clean

Team

License

MIT

主要指标

概览
名称与所有者epicmaxco/vuestic-admin
主编程语言Vue
编程语言Python (语言数: 6)
平台
许可证MIT License
所有者活动
创建于2017-07-31 11:52:40
推送于2025-01-06 10:54:23
最后一次提交2024-11-22 19:05:20
发布数24
最新版本名称v4.0.0 (发布于 )
第一版名称v1.0.0 (发布于 )
用户参与
星数10.8k
关注者数263
派生数1.8k
提交数1.9k
已启用问题?
问题数609
打开的问题数66
拉请求数345
打开的拉请求数7
关闭的拉请求数112
项目设置
已启用Wiki?
已存档?
是复刻?
已锁定?
是镜像?
是私有?